32 research outputs found

    Local spectral statistics of Gaussian matrices with correlated entries

    Get PDF
    We prove optimal local law, bulk universality and non-trivial decay for the off-diagonal elements of the resolvent for a class of translation invariant Gaussian random matrix ensembles with correlated entries

    Stability of the matrix Dyson equation and random matrices with correlations

    Get PDF
    We consider real symmetric or complex hermitian random matrices with correlated entries. We prove local laws for the resolvent and universality of the local eigenvalue statistics in the bulk of the spectrum. The correlations have fast decay but are otherwise of general form. The key novelty is the detailed stability analysis of the corresponding matrix valued Dyson equation whose solution is the deterministic limit of the resolvent

    Local semicircle law with imprimitive variance matrix

    Get PDF
    We extend the proof of the local semicircle law for generalized Wigner matrices given in MR3068390 to the case when the matrix of variances has an eigenvalue -1. In particular, this result provides a short proof of the optimal local Marchenko-Pastur law at the hard edge (i.e. around zero) for sample covariance matrices X*X, where the variances of the entries of X may vary

    Cusp universality for random matrices I: Local law and the complex Hermitian case

    Get PDF
    For complex Wigner-type matrices, i.e. Hermitian random matrices with independent, not necessarily identically distributed entries above the diagonal, we show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are universal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner–Dyson–Mehta universality conjecture for the last remaining universality type in the complex Hermitian class. Our analysis holds not only for exact cusps, but approximate cusps as well, where an extended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp for both symmetry classes. This result is also the key input in the companion paper (Cipolloni et al. in Pure Appl Anal, 2018. arXiv:1811.04055) where the cusp universality for real symmetric Wigner-type matrices is proven. The novel cusp fluctuation mechanism is also essential for the recent results on the spectral radius of non-Hermitian random matrices (Alt et al. in Spectral radius of random matrices with independent entries, 2019. arXiv:1907.13631), and the non-Hermitian edge universality (Cipolloni et al. in Edge universality for non-Hermitian random matrices, 2019. arXiv:1908.00969)

    Local laws for polynomials of Wigner matrices

    No full text
    We consider general self-adjoint polynomials in several independent random matrices whose entries are centered and have the same variance. We show that under certain conditions the local law holds up to the optimal scale, i.e., the eigenvalue density on scales just above the eigenvalue spacing follows the global density of states which is determined by free probability theory. We prove that these conditions hold for general homogeneous polynomials of degree two and for symmetrized products of independent matrices with i.i.d. entries, thus establishing the optimal bulk local law for these classes of ensembles. In particular, we generalize a similar result of Anderson for anticommutator. For more general polynomials our conditions are effectively checkable numerically

    The Dyson equation with linear self-energy: Spectral bands, edges and cusps

    No full text
    We study the unique solution mm of the Dyson equation −m(z)−1=z−a+S[m(z)] -m(z)^{-1} = z - a + S[m(z)] on a von Neumann algebra A\mathcal{A} with the constraint Im m≥0\mathrm{Im}\,m\geq 0. Here, zz lies in the complex upper half-plane, aa is a self-adjoint element of A\mathcal{A} and SS is a positivity-preserving linear operator on A\mathcal{A}. We show that mm is the Stieltjes transform of a compactly supported A\mathcal{A}-valued measure on R\mathbb{R}. Under suitable assumptions, we establish that this measure has a uniformly 1/31/3-H\"{o}lder continuous density with respect to the Lebesgue measure, which is supported on finitely many intervals, called bands. In fact, the density is analytic inside the bands with a square-root growth at the edges and internal cubic root cusps whenever the gap between two bands vanishes. The shape of these singularities is universal and no other singularity may occur. We give a precise asymptotic description of mm near the singular points. These asymptotics generalize the analysis at the regular edges given in the companion paper on the Tracy-Widom universality for the edge eigenvalue statistics for correlated random matrices [arXiv:1804.07744] and they play a key role in the proof of the Pearcey universality at the cusp for Wigner-type matrices [arXiv:1809.03971,arXiv:1811.04055]. We also extend the finite dimensional band mass formula from [arXiv:1804.07744] to the von Neumann algebra setting by showing that the spectral mass of the bands is topologically rigid under deformations and we conclude that these masses are quantized in some important cases

    Local inhomogeneous circular law

    No full text
    We consider large random matrices X with centered, independent entries which have comparable but not necessarily identical variances. Girko's circular law asserts that the spectrum is supported in a disk and in case of identical variances, the limiting density is uniform. In this special case, the local circular law by Bourgade et. al. [11,12] shows that the empirical density converges even locally on scales slightly above the typical eigenvalue spacing. In the general case, the limiting density is typically inhomogeneous and it is obtained via solving a system of deterministic equations. Our main result is the local inhomogeneous circular law in the bulk spectrum on the optimal scale for a general variance profile of the entries of X

    Local inhomogeneous circular law

    No full text
    We consider large random matrices X with centered, independent entries which have comparable but not necessarily identical variances. Girko's circular law asserts that the spectrum is supported in a disk and in case of identical variances, the limiting density is uniform. In this special case, the local circular law by Bourgade et. al. [11,12] shows that the empirical density converges even locally on scales slightly above the typical eigenvalue spacing. In the general case, the limiting density is typically inhomogeneous and it is obtained via solving a system of deterministic equations. Our main result is the local inhomogeneous circular law in the bulk spectrum on the optimal scale for a general variance profile of the entries of X

    Scattering in quantum dots via noncommutative rational functions

    Get PDF
    In the customary random matrix model for transport in quantum dots with M internal degrees of freedom coupled to a chaotic environment via ≪ channels, the density of transmission eigenvalues is computed from a specific invariant ensemble for which explicit formula for the joint probability density of all eigenvalues is available. We revisit this problem in the large N regime allowing for (i) arbitrary ratio :=/≤1; and (ii) general distributions for the matrix elements of the Hamiltonian of the quantum dot. In the limit →0, we recover the formula for the density that Beenakker (Rev Mod Phys 69:731–808, 1997) has derived for a special matrix ensemble. We also prove that the inverse square root singularity of the density at zero and full transmission in Beenakker’s formula persists for any <1 but in the borderline case =1 an anomalous −2/3 singularity arises at zero. To access this level of generality, we develop the theory of global and local laws on the spectral density of a large class of noncommutative rational expressions in large random matrices with i.i.d. entries
    corecore