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Abstract We prove optimal local law, bulk universality and non-trivial decay for the off-
diagonal elements of the resolvent for a class of translation invariant Gaussian randommatrix
ensembles with correlated entries.
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1 Introduction

Most rigorous works on randommatrix ensembles concern eitherWigner matrices with inde-
pendent entries [16,23] (up to the real symmetric or complex hermitian symmetry constraint),
or invariant ensembles where the correlation structure of the matrix elements is very spe-
cific. Since the existing methods to study Wigner matrices heavily rely on independence,
only very few results are available on ensembles with correlated entries, see [10–12,19] for
the Gaussian case. The global semicircle law in the non Gaussian case with (appropriately)
weakly dependent entries has been established via moment method in [22] and via resolvent
method in [18]. A similar result for sample covariance matrices was given in [20]. All these
works establish limiting spectral density on the macroscopic scale and in models where the
dependence is sufficiently weak so that the limiting density of states coincides with that of
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the independent case. A more general correlation structure was explored in [5] with a non-
trivial limit density, but still only on the global scale, see also [6]. We also mention the very
recent proof of the local semicircle law and bulk universality for the adjacency matrix of
the d-regular graphs [7,8] which has a completely different specific correlation (due to the
requirement that every row contains the same number of ones).

In this paper we consider self-adjoint Gaussian randommatricesH with correlated entries.
We assume that H is of the form X +X∗ where the elements of X have a translation invariant
correlation structure. Our main result is the optimal local law for H, i.e., we show that the
empirical eigenvalue measure of H converges to a deterministic probability density ρ all the
way down to the scale N−1, the typical distance between eigenvalues, as the dimension N of
H increases. We also find that the off diagonal elements of the resolvent G(z) := (H − z)−1

with Imz > 0 in the canonical basis are not negligible (unlike in the independent case)
and in fact they inherit their decay from the correlation of the matrix elements. As a simple
consequence of the local law we get bulk universality. Furthermore, we provide sufficient
conditions for the asymptotic eigenvalue density ρ to be supported on a single interval with
square root growth at both ends.

The proofs rely on the key observation that the (discrete) Fourier transform ̂H = (̂hφθ )

of a translation invariantly correlated self-adjoint random matrix H has independent entries
up to an additional symmetry (cf. Lemma 3.2 below). Thus, our recent results [2] on the
local law and bulk universality of Wigner type matrices with a general variance matrix can
be applied. Some modifications to accommodate this extra symmetry are necessary in the
proofs, but they do not influence the final result. The upshot is that in the Fourier space the
diagonal elements of ̂G(z) approximately satisfy the equation

− 1
̂Gφφ(z)

≈ z +
∑

θ

sφθ
̂Gθθ (z), sφθ := E

∣

∣̂hφθ

∣

∣

2
, (1.1)

which constitutes a small perturbation of the quadratic vector equation (QVE),

− 1

mφ(z)
= z +

∑

θ

sφθmθ (z), (1.2)

that was extensively analysed in [1,3]. Since the matrix S = (sφθ ) is typically not stochastic,
the componentsmφ(z) of the solution genuinely depend onφ.We establish natural conditions
on the correlation structure of H that guarantee that the recently developed theory [1,3] on
QVEs is applicable. In particular, the stability of the QVE implies that the solutions of (1.1)
and (1.2) are close, i.e., ̂Gφφ(z) = mφ(z) + o(1), even for spectral parameters z very close
to the real axis, down to the scale Im z � N−1. This yields the local law for the eigenvalue
density of ̂H. Moreover, the anisotropic law from [2], applied to ̂H, translates directly into a
precise asymptotics for any matrix elements of the resolvent in the canonical basis:

Gxy(z) = 1

N

∑

φ,θ

e−i2π(φx−θy)
̂Gφθ (z) ≈ 1

N

∑

φ

e−i2πφ(x−y) mφ(z).

The off-diagonal decay of the entries of G(z) thus follows from smoothness properties of
mφ(z) in the variable φ. We show that, in turn, this smoothness follows from the decay
conditions on the correlation structure of H. Finally, we prove bulk universality of the local
spectral statistics of H by using the analogous result from [2] for ̂H and the fact that H and
̂H are isospectral.

Gaussian random matrices with translation invariant covariance structure have been ana-
lyzed earlier and it has also been realized that the Eq. (1.2) via Fourier transform plays a key
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role in identifying the limiting density of eigenvalues, see Khorunzhy and Pastur [19,21],
Girko [17], as well as Anderson and Zeitouni in [5]. These works, however, were concerned
only with the density on macroscopic scales. The off-diagonal decay of the resolvent and the
bulk universality require much more detailed information. The current paper in combination
with [1,2] presents such a precise analysis.

2 Set-Up and Main Results

Consider a real symmetric or complex hermitian random matrix,

H = (hi j )i, j∈T, (2.1)

indexed by the large discrete torus of size N ,

T := Z/NZ. (2.2)

We assume that the matrix is centered, i.e.,

E hi j = 0, ∀ i, j ∈ T, (2.3a)

and that the elements hi j are jointly Gaussian. The covariances of the elements of H are
specified by two self-adjoint matrices A = (ai j )i, j∈T and B = (bi j )i, j∈T, through

E hi j hkl = 1

N
(ai−k, j−l + bi−l, j−k), ∀ i, j, k, l ∈ T. (2.3b)

Here the subtractions in i − k and j − l, etc., are done in the torus T. Let us also denote the
graph distance of x ∈ T from the special point 0 ∈ T by |x |. We remark that any random
matrix of the form H = X + X∗, where X = (xi j )i, j∈T is centred and translation invariant
in the sense that (xi+k, j+l)i, j∈T has the same law as X for any fixed shift (k, l) ∈ T

2, has the
correlation structure (2.3b).

The following properties of A are needed to state our main results:
(D1) Power law decay: There is a positive integer κ , such that

∑

x,y∈T

(

1 + |x | + |y| )κ ∣

∣axy
∣

∣ ≤ 1. (2.4)

(D2) Exponential decay: There is a constant ν > 0 such that

∣

∣axy
∣

∣ ≤ e−ν
(

|x |+|y|
)

, ∀ x, y ∈ T. (2.5)

(R1) Non-resonance: There is a constant ξ1 > 0, such that
∑

x∈T
ei2πφxax0 ≥ ξ1, ∀ φ ∈ [0, 1]. (2.6)

(R2) Strong non-resonance: There is a constant ξ2 > 0, such that
∑

x,y∈T
ei2π(xφ−yθ)axy ≥ ξ2, ∀ φ, θ ∈ [0, 1]. (2.7)

In general the solution of the QVE (1.2) specifying the asymptotic density of the states for
Hmay be neither bounded nor stable (cf. [1, Sect. 9]).Wewill show that certain combinations
of the above conditions exclude these issues.
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The restrictions on the correlation structure are quantified by the N -independent model
parameters ν, κ, ξ1, ξ2 appearing above. We remark that the normalization of (2.4) and (2.5)
is chosen for convenience, e.g., we could replace 1 on the right hand side of (2.4) by some
finite constant. The set of model parameters depends on our assumptions, e.g., if only (D1)
and (R2) are assumed, then κ and ξ2 are the model parameters. We allow constants appearing
in the statements to depend on the model parameters.

For compact statements of our results we define the notion of stochastic domination,
introduced in [13,14]. This notion is designed to compare sequences of random variables in
the large N limit up to small powers of N on high probability sets.

Definition 2.1 (Stochastic domination) Suppose N0 : (0,∞)2 → N is a given function,
depending only on the model parameters, as well as on an additional tolerance exponent
γ ∈ (0, 1). For two sequences, ϕ = (ϕ(N ))N and ψ = (ψ(N ))N , of non-negative random
variables we say that ϕ is stochastically dominated by ψ if for all ε > 0 and D > 0,

P
(

ϕ(N ) > N εψ(N )
)

≤ N−D, N ≥ N0(ε, D). (2.8)

In this case we write ϕ ≺ ψ .

Let us denote the upper complex half plane and the discrete dual torus of T by

H := {

z ∈ C : Im z > 0
}

, and S := N−1
T,

respectively. It was shown in [1] that the quadratic vector equation (QVE)

− 1

mφ(z)
= z +

∑

θ∈S
âφθmθ (z), (2.9)

where

âφθ := 1

N

∑

x,y∈T
ei2π(xφ−yθ) axy, (2.10)

has a unique solution m(z) = (mφ(z))φ∈S in H
S, for every z ∈ H.

Our main result is the optimal local law and the decay estimate for the off-diagonal
resolvent entries. These are stated in terms of the resolvent G(z) = (Gi j (z))i, j∈T,

G(z) := (H − z)−1.

Theorem 2.2 (Local law for Gaussian matrices with correlated entries) Suppose A is either
exponentially decaying (D2) and non-resonant (R1), or decays like a power law (D1) and is
strongly non-resonant (R2). Then for any tolerance exponent γ ∈ (0, 1) and uniformly for
all z ∈ R + i[N γ−1,∞)

max
x,y∈T

∣

∣

∣Gxy(z) − qx−y(z)
∣

∣

∣ ≺
√

Im q0(z)

N Im z
+ 1

N Im z
(2.11a)

∣

∣

∣

∣

1

N
Tr G(z) − q0(z)

∣

∣

∣

∣

≺ 1

N Im z
, (2.11b)

where

qx (z) := 1

N

∑

φ∈S
e−i2πxφmφ(z), x ∈ T. (2.12)
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The vector q(z) = (qx (z))x∈T inherits the decay type (exponential vs. power law) from A, in
the sense that

|qx (z)| ≤ C

{

|x |−κ + N−1/2 when (2.4) holds

e−ν′|x |+ N−1/2 when (2.5) holds
∀x ∈ T, (2.13)

with the constants C > 0 and ν′ > 0 depending only on the model parameters.

Generally the off-diagonal resolvent entries are not negligible even though (2.13) states
only an upper bound. In many cases matching lower bounds can be obtained. For example,
for the special model with correlation axy := e−ν(|x |+|y|) the QVE reduces to a simple scalar
equation since axy factorizes. An elementary calculation shows that in this case as N → ∞,

qx (z) → Q(z)λ(z)|x |, |x | ≥ 1,

for some λ(z), Q(z) ∈ C with 0 < |λ(z)| < 1.
Note that in the general setting of Theorem 2.2 the function π−1Im q0(z) is the harmonic

extension of the even probability density

ρ(τ) := lim
η↓0

1

πN

∑

φ∈S
Immφ(τ + iη), τ ∈ R, (2.14)

to the upper half plane. From (2.11b) it follows that the empirical spectral measure of H
approaches the measure with the Lebesgue density ρ as N → ∞. In fact, using a comparison
argument (cf. [6, Theorem 1]) this global convergence result extends also to non-Gaussian
translation invariant random matrices satisfying (2.3). By applying the general theory for
QVEs from [1] we are able to say more about the function q : H → C

T, and the associated
even probability density ρ : R → [0,∞).

Proposition 2.3 (Regularity of ρ and qx ) If A satisfies either (D1) and (R2), or (D2) and
(R1), then there exist five constants C0, c1,C2, β−, β+ > 0, depending only on the model
parameters, such that supp ρ = [−β, β], for some β ∈ [β−, β+], and

ρ(−β + ω) = ρ(β − ω) = C0ω
1/2+ ε(ω), ω ≥ 0, (2.15)

where |ε(ω)| ≤ C2ω. Moreover, for an arbitrary δ > 0, ρ(τ) ≥ c1δ1/2 whenever |τ | ≤
β − δ . The function q : H → C

T is analytic and it can be analytically extended to R\{±β}.
In particular, the density ρ is real analytic away from ±β, the edges of its support.

We remark that there are no explicit conditions on the correlation matrix B in either
Theorem 2.2 or Proposition 2.3. However, A and B are related. For example, if H is real
valued then A = B. The Fourier transforms of A and B must satisfy certain compatibility
relations (cf. the proof of Corollary 2.4) which are equivalent to positive definiteness of the
corresponding covariance matrices.

Similarly, as in the case of Wigner type matrices the local law implies the bulk univer-
sality for Gaussian matrices with correlated entries. However, the q-fullness condition ([2,
Definition 1.14]) is replaced by a different non-generacy condition.

Corollary 2.4 (Bulk universality) Assume A satisfies (D1) and either of the following holds:

• H is real symmetric and A is strongly non-resonant (R2);
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• H is complex hermitian, and there is a constant ξ3 > 0 such that

∣

∣̂bφθ

∣

∣

2
<

(

âφ,θ − ξ3

N

)

+

(

â−φ,−θ − ξ3

N

)

+
, ∀φ, θ ∈ [0, 1], (2.16)

wherêbφθ is defined analogously to âφθ in (2.10), and τ+ := max{0, τ }, for τ ∈ R.

Then for any parameter ρ0 > 0 and a smooth compactly supported function F : Rn → R,
n ∈ N, there exist constants c,C > 0, depending only on ρ0, κ , the function F, and either ξ2
or ξ3, such that for any τ ∈ R with ρ(τ) ≥ ρ0 the local eigenvalue distribution is universal,
∣

∣

∣

∣

EF
(

(

Nρ(λi(τ ))(λi(τ ) − λi(τ )+ j )
)n
j=1

)

− EGF
(

(

Nρsc(0)(λ�N/2� − λ�N/2�+ j )
)n
j=1

)

∣

∣

∣

∣

≤ CN−c.

Here, EG denotes the expectation with respect to the standard Gaussian ensemble, i.e.,
with respect to GUE and GOE in the cases of complex hermitian and real symmetric H,
respectively, and ρsc(0) = 1/(2π) is the value of Wigner’s semicircle law at the origin.

Let us introduce the notations ‖v‖∞ := maxi |vi | and v · w = ∑

i viwi for v, w ∈ C
T.

Corollary 2.5 (Delocalization of eigenvectors) Let u(i) ∈ C
N be the normalized eigenvector

of H corresponding to the eigenvalue λi . All eigenvectors are delocalized in the sense that
for any deterministic unit vector b ∈ C

N we have
∣

∣b · u(i)
∣

∣ ≺ N−1/2.

In particular, the eigenvectors are completely delocalized, i.e., ‖u(i)‖∞ ≺ N−1/2.

The following result shows a practical way to construct real symmetric random matrices
with translation invariant correlation structure. A similar, but slightly more complicated
convolution representation exists for complex hermitian random matrices.

Lemma 2.6 (Linear filtering) Suppose a real symmetric matrix A satisfies the Bochner type
condition

∑

i, j,k,l∈T
wi j ai−k, j−l wkl ≥ 0, (2.17)

for arbitrarymatricesW = (wi j )i, j∈T. Then the randommatrixH defined as the convolution,

hi j :=
∑

k,l∈T
ri−k, j−l vkl , (2.18)

of a GOE random matrix V = (vi j )i, j∈T, and the filter matrix R = (ri j )i, j∈T, defined by

rxy := 1

N 1/2

∑

φ,θ∈S
e−i2π(xφ−yθ)

√

âφθ , (2.19)

has the correlation structure (2.3) with B = A.

This lemma is proven at the end of Sect. 5. We introduce the following conventions and
notations used throughout this paper.
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Convention 2.7 (Constants and comparison relation) Symbols c, c1, c2, . . . and C,C1,

C2, . . . denote generic positive and finite constants that depend only on the model para-
meters. They have a local meaning within a specific proof. For two arbitrary non-negative
functions ϕ and ψ defined on some domain U, we write ϕ � ψ , or equivalently ψ � ϕ,
if ϕ(u) ≤ Cψ(u), holds for all u ∈ U. The notation ψ ∼ ϕ is equivalent to both ψ � ϕ

and ψ � ϕ holding at the same time. In this case we say that ψ and ϕ are comparable. In
general the relation � is called the comparison relation. We also write ψ = ϕ + O(ϑ) if
|ψ − ϕ| � ϑ .

2.1 Structure of the Proof

The proof of Theorem 2.2 splits into three separate parts. In the first part we show how to
make H into an almost Wigner type matrix by changing basis. In the second part we describe
how the proofs for Wigner type matrices in [2] are modified in order to accommodate some
extra dependence in the transformed matrix. In the third part we show that the assumptions
on the correlation matrix A imply that the QVE (2.9) has a bounded and sufficiently regular
solution m using the general theory developed in [1]. Finally, in the last section we combine
the results of the three steps and prove Theorem 2.2.

3 Mapping H into Wigner Type Matrix by Change of Basis

The (discrete) Fourier transforms of a matrix T = (ti j )i, j∈T is another matrix̂T = (̂tφθ )φ,θ∈S
defined by

t̂φθ := 1

N

∑

x,y∈T
ei2π(φx−θy)txy . (3.1)

Since the mapping T �→ ̂T corresponds to the conjugation by the unitary matrix F =
( fφ,y)φ∈S,y∈T, with elements

fφy := N−1/2ei2πφy, φ ∈ S, x ∈ T, (3.2)

the matrices T and ̂T = FTF∗ have the same spectrum:

Spec(T) = Spec(̂T).

In the following we analyze randommatrices which have independent entries modulo two
reflection symmetries.

Definition 3.1 (fourfold correlated ensemble) A random matrix H indexed by a torus is
fourfold correlated if hi j and hkl are independent unless

(k, l) ∈ {

(i, j), ( j, i), (−i,− j), (− j,−i)
}

. (3.3)

The next result shows that the discrete Fourier transformmaps Gaussian translation invari-
ant random matrices into Wigner type random matrices with an extra dependence. This
connection was first realized by Girko [17] and Khorunzhy and Pastur [19]. It has been later
used in [5,6,12].

Lemma 3.2 (Fourier transform) Let H be a (not necessarily Gaussian) random matrix sat-
isfying (2.3). Then the elements of its Fourier transform ̂H satisfy
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Êhφθ = 0 (3.4a)

Êhφθ
̂hφ′θ ′ = âφθ δφφ′ δθθ ′ +̂bφθ ′ δφ,−θ ′ δθ,−φ′ , (3.4b)

for every φ, φ′, θ, θ ′ ∈ S. If additionally H is Gaussian, then ̂H is fourfold correlated.

We remark that if axy satisfies the decay estimate (2.4), then âφθ ,
∣

∣̂bφθ

∣

∣ � N−1.

Proof The proof of (3.4) is a straightforward computation. We omit further details. From
(3.4b) we see that covariances between Rêhφθ , Im̂hφθ and Rêhφ′θ ′ , Im̂hφ′θ ′ can be non-zero
if and only if the condition equivalent to (3.3) holds. Since the covariance matrix captures
completely the dependence between the components of a Gaussian random vector the state-
ment about the independence follows trivially.

3.1 Local Law for Fourfold Correlation

In this subsection we sketch how to prove a local law for the elements of the Fourier-
transformed resolvent

̂G(z) = (̂H − z)−1,

by slightly modifying the proof for the Wigner type matrices in [2]. Indeed, the analysis is
the same as before, but due to the extra correlation between (φ, θ) and (−φ,−θ) we have to
remove both the rows and columns corresponding to indices φ and −φ from ̂H in order to
make it independent of a given row φ. We state a local law for a general self-adjoint random
matrix with independent entries apart from a possible correlation of the entries with indices
(i, j) and (−i,− j).

Theorem 3.3 (Local law for fourfold correlation) SupposeH = (hi j )i, j∈T is fourfold corre-
lated instead of having independent entries up to self-adjointness. If H otherwise still fulfills
the conditions of Theorem 1.6 from [2] and has an additional symmetry

Ehi j h− j,−i = 0, i �= j, (3.5)

then the conclusions of Theorem 1.6 from [2] hold.
In particular, suppose the solution of

− 1

mi
= z + (Sm)i , i ∈ T, z ∈ H, (3.6)

with si j := E
∣

∣hi j
∣

∣

2
, is uniformly bounded in i and z, and that there exists a constant ε∗ > 0

such that for every ε ∈ (0, ε∗) the set {τ ∈ R : ρ(τ) > ε} is an interval. Here the density
ρ(τ) is obtained by extending

ρ(z) := 1

πN

∑

i

Immi (z),

to the real axis. Then for any γ > 0 the local law holds uniformly for every z = τ + iη, with
η ≥ N γ−1, and non-random w ∈ C

T satisfying maxi |wi | ≤ 1:

max
i, j

∣

∣Gi j (z) − mi (z)δi j
∣

∣ ≺
√

ρ(z)

Nη
+ 1

Nη
, (3.7)

∣

∣

∣

∣

1

N

N
∑

i=1

wi
(

Gii (z) − mi (z)
)

∣

∣

∣

∣

≺ 1

Nη
. (3.8)
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The stochastic domination depends only on γ and ε∗, and the constants μ = (μk), P, L , p

appearing in the estimates contained in the assumptions of Theorem 1.6 from [2]:E
∣

∣hi j
∣

∣

k ≤
(si j )k/2μk , si j ≤ 1/N, (SL)i j ≥ p/N, and |mi (z)| ≤ P, for all i, j ∈ T.

The extra symmetry condition (3.5) is automatically satisfied by random matrices with
the covariance structure (3.4b), but it is generally not needed for the local law to hold (cf. [4]
when S is stochastic).

Proof of Theorem 3.3 Wemodify slightly the proof of Theorem 1.6 in [2]. The independence
of the entries hi j and h−i,− j was used to estimate the off-diagonal resolvent entries and the
perturbation d = d(z) of the perturbed QVE satisfied by the diagonal resolvent elements
gk = gk(z) = Gkk(z),

− 1

gk
= z + (Sg)k + dk, k ∈ T, z ∈ H, (3.9)

only in the proofs of Lemma 2.1 and Theorem 3.5 in [2].
In order to generalize Lemma 2.1 of [2] we apply the general resolvent identity (2.9)

from [2] to replace the entries of G(k) by the corresponding entries of G(k,−k) in the defining
formula (2.2) of dk in [2]. This way we obtain a representation for dk as a sum of terms each
of which can be individually shown to be small by using either trivial bounds, or by using
the large deviation estimates (2.7) similarly as in the proof of Lemma 2.1 in [2]. We will not
present these estimates here, since a very similar analysis was carried out in Sect. 5 of [4].
The details for obtaining this representation for dk in the fourfold correlated randommatrices
are provided in Sect. 5.1 of [4]. We note that (3.9) is equivalent to formula (5.4) in [4] with
the symbol ϒk denoting dk . The off-diagonal resolvent elements are treated similarly by
decoupling the dependence between specific rows of H and the entries of G. The treatment
of the reflected off-diagonal elements Gi,−i is simpler than in Sect. 5.2 of [4] since the
extra symmetry (3.5) makes many error terms disappear. Instead of (3.5) another symmetry,
h−x,−a = hax , was assumed in [4]. Since all the factors of the formE h2xa in the error terms

E(k)
x in [4] first appeared in the form E haxh−x,−a , which is zero in our case by (3.5), when

following the proof in [4], we may replace the terms E h2xa with zeros.
The fluctuation averaging ([2, Theorem 3.5]) is extended to fourfold correlated matri-

ces also by slightly modifying the original proof of Theorem 4.7 in [14]. In particular, the
arguments do not rely on the stochasticity of S as explained in the proof of Theorem 3.5
in [2]. In order to handle the extra dependence one needs to make a simple modification:
The equivalence relation given within the proof needs to be generalized such that for a given
index-tuple k = (k1, . . . , kp) ∈ T

p , we define r ∼ s to mean that either kr = ks or kr = −ks .
This means that for each ’lone index’ k one removes the index −k in addition to k from the
other resolvent elements within the same monomial. For a more detailed description of the
necessary modifications see the proof of Theorem 4.6 in [4].

3.2 Anisotropic Local Law for Fourfold Correlation

In order to translate the statements of the local law in Fourier coordinates back to the original
coordinates we need an anisotropic local law. Here we consider |z| to be bounded to get
simpler estimates. This condition can be easily dropped out if needed.

Theorem 3.4 (Anisotropic law) SupposeH = (hi j )i, j∈T is a self-adjoint fourfold correlated
random matrix with centered entries satisfying the local law at some fixed z, satisfying
|z| ≤ 10,
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max
i, j

∣

∣Gi j − δi jmi
∣

∣ ≺ �, (3.10)

where the non-random constant � satisfies N−1/2 ≤ � ≤ N−ε , for some ε > 0. Then
uniformly for all z = τ + iη ∈ H satisfying η ≥ N γ−1, and all non-random unit vectors
u, v ∈ C

T:
∣

∣u · (G − diag(m))v
∣

∣ ≺ �. (3.11)

Proof The proof is a straightforward generalization of the method applied in [9] to prove
anisotropic local law for random covariancematrices and generalWignermatrices. The proof
boils down to showing that for every p ∈ 2N there exists a constant C(p) independent of N
such that for every ‖v‖�2 ≤ 1 the moment bound

E
∣

∣

∣

∑

a �=b

vaGabvb

∣

∣

∣

p ≤ C(p)�p, (3.12)

holds. In the following we will denote generic constants depending only on p by C(p).
Only two minor modifications to the method used in Sect. 7 of [9] are needed. First, since
S is not stochastic one needs to take into account that Gii (z) is close to mi (z) instead of
an i-independent function such as the Stieltjes transform of the semicircle law, msc(z). This
generalisation was handled in [2] (cf. Theorem 1.12) where the anisotropic local law was
proven for Wigner type matrices. As the second modification we need to incorporate the
extra dependencies between the matrix elements hak and h−a,−k into the analysis of [9]. To
this end we walk through the key points of the arguments in [9] and point out along the way
how the steps are modified to incorporate this extra dependence.

The starting point of the argument is to write the right hand side of (3.12) in the form:

E

∣

∣

∣

∣

∑

b1 �=b2

vb1Gb1b2vb2

∣

∣

∣

∣

p

=
∑

b11 �=b12

· · ·
∑

bp1 �=bp2

vb11vb12 · · · vbp1vbp2 E

p/2
∏

k=1

Gbk1bk2

p
∏

l=p/2+1

G∗
bl1bl2 , (3.13)

for an arbitrary even integer p. Let us consider a fixed summand, so that the values of the
v-indices bk1, bk2 are fixed. Here the size of the expectation is naively bounded by �p .
However, there are 2p sums over the elements of the �2-unit vector v. Since ‖v‖�1 ≤ N 1/2

the naive size of the right hand side of (3.13) is N p/2�p .
The key idea of the proof is to apply recursively the general resolvent identities (cf. [2,

(2.9)]) to express the product of resolvent entries in (3.13) as a sum over so-called trivial
leaves (cf. [9, Sect. 5.10]) and the sum over C(p) terms (corresponding to the non-trivial
leaves in [9]) of the form

�a,b,c,d

∏

β

hcβdβ

(B)
∑

i

(B)
∑

j

δ(i, j)
∏

α

haα iαG
(B),#
iα jα

h jαbα . (3.14)

Here B = {±bk1} ∪ {±bk2} is the set of all rows of H that may depend on the rows indexed
by the v-indices, {aα} ∪ {bα} ∪ {cβ} ∪ {dβ} ⊂ B and i = (iα) and j = ( jα) are summed over
T\B with a non-random indicator function δ(i, j) possibly further restricting these sums. The
superscripts # on resolvent entries indicate possible hermitian conjugations. The products in
(3.14) contain at mostC(p) factors, while the symbol�a,b,c,d denotes a non-random function
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of sizeO(1) that may depend on aα, bα, cβ, dβ . We remark that terms of the form (3.14) are
coded by expressions Aab,ab (�ζ ) in the formula (5.45) of [9].

The trivial leaves, exactly as in [9], correspond to products of resolvent entries that remain
smaller than�p even after summing over the v-indices simply because they contain products
of so many off-diagonal resolvent elements of size O(N−ε) that these together compensate
the factor N p/2 originating from the brutal �1-summation over |vb| (cf. [9, Sect. 5.11]). The
classification of the constituents of the product of resolvent entries into the trivial and the non-
trivial leaves relies on the concept ofmaximally expanded resolvent entries [9, Sect. 5.3]. For
fourfold correlated matrices we redefine resolvent entries of the type G(B\ab)

ab , with a, b ∈ B,
as being maximally expanded. Here the set B plays the same role as the black vertices in [9].

From now on we concentrate on the non-trivial leaves of the type (3.14). The key property
of these terms is that their expectation factorizes into an expectation over all the entries of
H, and the expectation over all the entries of G. From (2.3a) it follows that the expectation
over the entries of H can be non-zero only if each entry of H is paired with at least one of the
four possible entries of H it is not independent of. As a consequence, either each v-index is
paired with at least one other B-index, or there are so many extra entries of H compared to
the number of independently summable indices in the products of (3.14) that the small sizes
|hai | ≺ N−1/2 compensate the presence of non-paired v-indices. In order to see that every
term of the type (3.14) indeed has these properties one uses the same graph expansion as in
[9] to perform the relevant bookkeeping.

The key insight about the combinatorics of the pairing of H-entries is that the number of
ways to pair all C(p) of them in (3.14) is bounded by a number only depending on p, say
by C(p)C(p), but not on N . Such a factor can be included in the constant C(p) on the right
hand side of (3.12), and is hence harmless. Since hbk may be paired not only with itself but
also with h−b,−k , it is now possible that vb gets paired with v−b. However, using

|va | |v−a | ≤ |va |2 + |v−a |2 , (3.15)

these terms can be reduced to �2-norms of v.
Let us illustrate the modifications by considering the simplest leading order terms of the

type (3.14) when p = 2. Considering the contribution of such terms to the right hand side of
(3.13) yields

∑

a �=b

∑

c �=d

vavbvcvd mambmcmd E

[a,b,c,d]
∑

i, j,k,l

G[a,b,c,d]
i j G[a,b,c,d]∗

kl E hai hbj hckhdl ,

whereG[T ] := G(T∪(−T )) for any set T ⊂ T. Here the productmambmcmd corresponds to the
constant �a,b,c,d = O(1) and the inner sums correspond to the i, j-sums in (3.14). Without
the fourfold correlations there are only two ways to pair the entries of H: (1) (a, i) =
(c, k),(b, j) = (d, l), and (2) (a, i) = (d, l), (b, j) = (c, k). On the other hand, under
fourfold correlations it is possible to pair the entries in 9 different ways: (1–4) (a, i) =
±(c, k), (b, j) = ±(d, l); (5–8) (a, i) = ±(d, l), (b, j) = ±(c, k); and (9) (a, i) = −(b, j),
(c, k) = −(d, l). Here, −(b, j) := (−b,− j), and the signs ± can be chosen independently
of each other. The pairings possible without the fourfold correlation yield terms such as

∑

a �=b

|va |2 |vb|2 1

N 2E
∑

i, j

∣

∣

∣G[a,b]
i j

∣

∣

∣

2
�

(

Emax
i �= j

∣

∣

∣G[a,b]
i j

∣

∣

∣ + 1

N
Emax

i

∣

∣

∣G[a,b]
i i

∣

∣

∣

2
)

‖v‖4
�2

,
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which are stochastically dominated by C(p)�2 since
∣

∣

∣G
(T )
i j − δi jmi

∣

∣

∣ ≺ C(p)� for any set

T ⊂ T satisfying |T | ≤ 2p. Here we have used
∣

∣

∣G
(T )
i j − Gi j

∣

∣

∣ � C(p)� (cf. [2, (2.10)]) and

the local law (3.10). Under the fourfold correlations the pairing produces also terms such
as

∑

a,c

vav−avcv−c
1

N 2E
∑

i,k

∣

∣G[a,c]
i,−i

∣

∣

∣

∣G[a,c]
k,−k

∣

∣. (3.16)

Here the off-diagonal resolvent elements are again stochastically dominated by �. The sums
over a and c can be bounded using (3.15) and ‖v‖�2 ≤ 1. Hence, also (3.16) is stochastically
dominated by �2. ��

4 Properties of QVE

In this section we show that the assumptions on A in our main theorems guarantee that
the induced QVE (2.9) has a sufficiently regular uniformly bounded solution. We show that
the quantity qx−y(z) describing the asymptotic value of the off-diagonal resolvent elements
Gx−y (cf. (2.11a)) has the correct decay properties in |x − y| by using the regularity of the
solution of the QVE.

Let us define a function ã : [0, 1]2 → C as a continuous extension of the elements of
N̂A,

ã(φ, θ) :=
N−1
∑

k,l=0

aklek(φ)e−l(θ), φ, θ ∈ [0, 1], (4.1)

where ek : R → C denotes the exponential function ek(φ) := ei2πkφ . Here we identified T

with the set of integers {0, 1, 2, . . . , N − 1}. We remark that ã(φ, θ) ≥ 0 for all φ, θ ∈ [0, 1].
This follows from the Bochner inequality (2.17). Note that âφθ = N−1ã(φ, θ), if φ, θ ∈ S,
with S being canonically embedded in [0, 1].

We will now define a third non-resonance condition for a correlation matrix A in terms of
the induced integral operator ˜A acting on functions h : [0, 1] → C,

˜Ah(φ) :=
∫ 1

0
ã(φ, θ)h(θ)dθ. (4.2)

(R0) Block fully indecomposability: The integral operator ˜A is block fully indecom-
posable (cf. [1, Definition 1.7]), i.e., there exist two constants ξ0 > 0, K ∈ N, a fully
indecomposable matrix Z = (Zi j )

K
i, j=1, with Zi j ∈ {0, 1}, and a measurable partition

D := {Dj }Kj=1 of [0, 1], such that for every 1 ≤ i, j ≤ K the following holds:

∣

∣Dj
∣

∣ = 1

K
, and ã(φ, θ) ≥ ξ0Zi j , whenever (φ, θ) ∈ Di × Dj . (4.3)

If (R0) is assumed we will treat the associated parameters κ, K , ξ0 as model parameters.
By definition (R2) implies ã(φ, θ) ≥ ξ2 for every φ, θ , and thus (R0) holds with ξ0 = ξ2
and D = {[0, 1]}. Assumption (R1) does not imply (R0), but (R1) and (D2) together do ( cf.
Lemma 4.2 below).

Instead of directly analyzing the discrete QVE (2.9) we will first establish the correct
properties for the solution of the continuous version
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− 1

m̃(z)
= z + ˜Am̃(z), (4.4)

of (2.9). Afterwards we deduce these properties for the discrete version (2.9) as well. For the
transition from the discrete to the continuous version we need certain stability properties of
the QVE that were established in [1].

We recall several notations and results from [1]. We will consider QVEs defined on a
probability space (X, π) with an operator S in two different setups. When we discuss the
discrete QVE (2.9), the setup is

X := S, π := 1

N

∑

φ∈S
δφ and S := N̂A, i.e., Sφθ := N âφθ . (4.5a)

For the continuous QVE (4.4) the setup is

X := [0, 1], π(dφ) := dφ and S := ˜A, i.e., Sφθ := ã(φ, θ). (4.5b)

In the following, all Lp-norms and the scalar products are understood in the appropriate
setups (4.5).

Lemma 4.1 (Bounded solution) If A satisfies (D1) and (R0), then the solution m̃(z) :
[0, 1] → H of the continuous QVE (4.4) satisfies

|m̃(z;φ)| + ∣

∣∂φm̃(z;φ)
∣

∣ � 1, ∀ (z, φ) ∈ H × [0, 1]. (4.6)

The unique solution m to the discrete QVE (2.9) is close to m̃:

sup
φ∈S

∣

∣mφ(z) − m̃(z;φ)
∣

∣ � N−1/2, ∀ z ∈ H. (4.7)

Proof We prove (4.6) first. In order to apply the general theory for QVEs we first show that
the integral operator ˜A satisfies the conditions A1–A5 from [1]. The qualitative properties
A1 and A2 are trivially satisfied. For the property A5 we show that the integral kernel of
˜AK−1 is bounded from below by a constant comparable to one. This follows from (R0) since
every element of the (K − 1)-th power of the indecomposable matrix Z is equal to or larger
than one (cf. Proposition 4.3 of [1]). For A4 we need to show that the norm ‖˜A‖2→∞ of ˜A
as an operator from L2[0, 1] to L∞[0, 1] is O(1). This follows from (4.1), because

|̃a(φ, θ)| + ∣

∣∂φ ã(φ, θ)
∣

∣ ≤ 2π
N−1
∑

x,y=0

(1 + |x |) ∣

∣axy
∣

∣ � 1. (4.8)

Finally, the normalization A3 of [1] holds if we replace ˜A and m̃(z;φ) by λ˜A and
λ−1/2m̃(λ−1/2z;φ), respectively, with λ := ||˜A||−1∞→∞. From (4.8) it follows that λ ∼ 1.

Next we show that m(z) is uniformly bounded for z �= 0. Indeed, using (4.8) we get

‖̃a(φ1, • ) − ã(φ2, • )‖2 ≤ C2 |φ1 − φ2| , ∀φ1, φ2 ∈ [0, 1].
From this it follows that

lim
ε→0

inf
φ1∈ [0,1]

∫ 1

0

dφ2

(ε + ‖̃a(φ1, • ) − ã(φ2, • )‖2)2 = ∞.

Since this implies the condition B1 of [1] (i) of Theorem 4.1 in [1] is applicable in the setup
(4.5b). The theorem shows that ‖m(z)‖∞ ≤ C(δ) for any |z| ≥ δ with C(δ) depending on
δ > 0. The property (R0) is equivalent to property B2 in [1]. Hence by (ii) of Theorem 4.1
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in [1] m̃(z) is uniformly bounded in some neighborhood of z = 0. Combining this with the
uniform bound away from z = 0 we get the uniform bound for |m̃(z;φ)| for all z and φ. In
order to bound also the derivative ∂φm̃(z;φ) we differentiate the continuous QVE (4.4) and
get

∂φm̃(z;φ) = m̃(z;φ)2
∫ 1

0
m̃(z; θ) ∂φ ã(θ, φ)dθ. (4.9)

Using (4.8) and the uniform boundedness of m̃ we finish the proof of (4.6).
Next we define

ρ̃(τ ) := lim
η↓0

1

π

∫ 1

0
Im m̃(τ + iη;φ)dφ, (4.10)

analogously to ρ in (2.14), in the continuous setting. With Theorem 1.1 of [1] we see that ρ̃
is a bounded probability density on R. By the continuity (4.8) we also have

sup
D⊂[0,1]

inf
φ1∈D
φ2 /∈D

∥

∥ã(φ1, • ) − ã(φ2, • )
∥

∥

1 = 0, (4.11)

and hence Theorem 1.9 from [1] yields supp ρ̃ = [−˜β, ˜β ], for some constant ˜β ∼ 1.
Now we prove (4.7) by considering (2.9) as a perturbation of (4.4). Given m we first

embed S into [0, 1] canonically, and define the piecewise constant functions

g(z;φ) := mN−1�Nφ�(z)
t (φ, θ) := N âN−1�Nφ�,N−1�Nθ�,

(4.12)

for φ, θ ∈ [0, 1]. Notice that t (φ, θ) = ã(φ, θ) and g(z;φ) = mφ(z) when φ, θ ∈ S. Hence
it is enough to estimate ‖g − m̃‖∞. Together with (4.8) this implies

|t (φ, θ) − ã(φ, θ)| � N−1, φ, θ ∈ [0, 1]. (4.13)

In terms of these quantities (2.9) can be written as

− 1

g
= z + Tg, where Th(φ) :=

∫ 1

0
t (φ, θ)h(θ)dθ. (4.14)

We will now consider g as the solution of the perturbed continuous QVE

− 1

g
= z + ˜Ag + d, where d := (T − ˜A)g. (4.15)

Using (4.13) we see that the perturbation d is indeed small:

‖d‖∞ ≤ ‖T − ˜A‖2→∞‖g‖2 � N−1‖g‖2. (4.16)

Clearly, ‖T ‖2→∞ ∼ 1 as well. Hence, we know from the general theory (cf. the bound (1.2)
of Theorem 1.1 of [1]) that ‖g(z)‖2 ≤ 2/ |z|. Using (4.13) we see that for sufficiently large
N the operator T is also block fully indecomposable with the same matrix Z and the same
partitionD as ˜A. Thus we get ‖g(z)‖2 � 1 for all z by (ii) of Theorem 4.1 in [1]. Combining
this with (4.16) yields

‖d(z)‖∞ � N−1. (4.17)
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Comparing (4.15) and (4.4) we show that (4.17) implies that the corresponding solutions
g and m̃ are close in the sense of (4.7). For this purpose we use the rough stability statement
from Theorem 1.10 of [1] to get

‖g(z) − m̃(z)‖∞1
(‖g(z) − m̃(z)‖∞ ≤ λ1

)

� N−1, dist(z, {˜β,−˜β}) ≥ c0, (4.18)

where c0 ∼ 1 and λ1 ∼ 1 are sufficiently small constants left unspecified until the end of the
proof.

Thismeans that we get stability as long aswe stay away from the points±˜β. The necessary
initial bound inside the indicator function is satisfied for large enough values of |z|, since

‖g(z)‖∞ + ‖m̃(z)‖∞ � |z|−1, |z| ≥ C1.

Here C1 is a sufficiently large constant. This bound follows from the Stieltjes transform
representation of both the solution of the discrete and the continuous QVE (cf. [1, Theorem
1.1]). We use continuity of g and m̃ in z and (4.18) to propagate the initial bound from the
regime of large values of |z| to all z ∈ H with dist(z, {˜β,−˜β}) ≥ c0. In particular, (4.18)
remains true even without the indicator function, i.e.,

‖g(z) − m̃(z)‖∞ � N−1, dist
(

z,
{

˜β,−˜β
}) ≥ c0. (4.19)

It remains to show (4.7) close to the edges by using that the instability at these two points
is quadratic. The argument is a simplified version of the one used in a random setting in
Sect. 4 of [2]. For the convenience of the reader we show a few details. We restrict to the
case |z − ˜β| ≤ c0, close to the right edge. The left edge is treated in the same way. For the
following analysis we use the stability result, Theorem 4.2 of [2], in the continuous setup (cf.
[1, Proposition 8.1]). The theorem yields

‖g − m̃‖∞1
(‖g − m̃‖∞ ≤ λ2

)

� � + N−1, (4.20)

where the quantity � = �(z) ≥ 0 is continuous in z and satisfies the cubic inequality
∣

∣�3 + π2�
2 + π1�

∣

∣1
(‖g − m̃‖∞ ≤ λ2

)

� N−1. (4.21)

Here the constant λ2 ∼ 1 is independent of c0.
Note that (4.21) corresponds to (4.10) in [2] and (8.5) in [1], respectively. Combining

(4.11), (4.14b) and (4.5d) in [2], the coefficients πk = πk(z) of the cubic equation (4.21)
satisfy

|π1| ∼ ∣

∣z − ˜β
∣

∣

1/2 ≤ c1/20 , and |π2| ∼ 1, (4.22)

provided c0 ∼ 1 is sufficiently small. Since π1(z) → 0 as z → ˜β, by decreasing the size
c0 of the neighborhood we are working on, the value of |π1| can be made arbitrarily small.
This, in turn, implies that the solution � of the cubic inequality (4.21) is small,

�1
(‖g − m̃‖∞ ≤ λ2

)

� |π1| + N−1/2.

Using this we canmake the right hand side of (4.20) smaller than λ2/2, say, by decreasing the
value of c0. Thus, there is a gap in the possible values of the continuous function z �→ ‖g(z)−
m̃(z)‖∞, in the sense that ‖g − m̃‖∞ /∈ (λ2/2, λ2). Since on the boundary, |z − ˜β| = c0,
the initial bound, ‖g − m̃‖∞ ≤ λ2, holds by (4.19), it propagates to all z with

∣

∣z − ˜β
∣

∣ ≤ c0.
Thus, (4.20) and (4.21) remain true without the indicator functions.

It still remains to bound � in (4.20). Since |π2| ∼ 1, we may absorb the cubic term in �

in (4.21). We find that � satisfies
∣

∣�2 + ��
∣

∣ � N−1, |� | ∼ ∣

∣z − ˜β
∣

∣

1/2
, (4.23)
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where � := π1/(π2 + �). From this it is easy to see that the bound � ≤ N−1/2 can be
propagated from the boundary |z − ˜β| = c0 inside the neighborhood |z − ˜β| ≤ c0 of the
right edge to give� � N−1/2 everywhere. Using this in (4.20) without the indicator function
proves the bound (4.7) at the right edge. ��
Lemma 4.2 If A satisfies (D2) and (R1), then also (R0) is satisfied, with the parameters
κ, K , ξ0 depending only on ξ1 and ν.

The part of the proof considering the exponentially decaying correlation matrices relies
on the following technical result that is proven in the appendix.

Lemma 4.3 (Jensen–Poisson bound) Suppose f is an analytic function on the complex strip,

Rν := R + i(−ν,+ν), (4.24)

of width ν > 0. If f satisfies

sup
ζ∈Rν

| f (ζ )| ≤ C1 and
∫ 1

0
| f (φ)| dφ ≥ 1, (4.25)

then for every ε > 0 there exists δ > 0 depending only on ε, ν,C1 such that
∣

∣

{

φ ∈ [0, 1] : | f (φ)| ≥ δ
}∣

∣ ≥ 1 − ε. (4.26)

Proof of Lemma 4.2 The non-resonance condition (2.6) guarantees that theL1[0, 1]-norms of
the row functions θ �→ ã(φ, θ) are uniformlybounded frombelow. Indeed, since ã(φ, θ) ≥ 0,
we have

‖̃a(φ, • )‖1 =
∫ 1

0
ã(φ, θ)dθ =

∑

j∈T
ei2π jφa j0 ≥ ξ1. (4.27)

From the exponential decay assumption (D2) it follows that the kernel function ã has an
analytic extension to the complex strip Rν , where ν > 0 is the exponent from (2.5). Using
Lemma 4.3 with f (ζ ) = ã(φ, ζ )/ξ1 for a fixed φ we see that for any ε > 0 there exists
δ > 0 depending only on ε such that

∣

∣

{

θ ∈ [0, 1] : ã(φ, θ) ≥ δ
}∣

∣ ≥ 1 − ε, ∀ φ ∈ [0, 1]. (4.28)

Using (4.28) we now show that ˜A is a block fully indecomposable operator, i.e., (R0) holds.
From (4.8) we see that

|̃a(φ1, θ1) − ã(φ2, θ2)| � |φ1 − φ2| + |θ1 − θ2| , (4.29)

for every φ1, φ2, θ1, θ2 ∈ [0, 1]. Let K ∈ N be so large that

∣

∣ã(φ1, θ1) − ã(φ2, θ2)
∣

∣ ≤ δ

2
, provided |φ1 − φ2| + |θ1 − θ2| ≤ 1

K
.

Let us define a partition D = {Dk}Kk=1 of [0, 1] and a matrix Z = (Zi j )
K
i, j=1, by

Dk :=
[

k − 1

K
,
k

K

)

and Zi j := 1

{

max
(φ,θ)∈Di×Dj

ã(φ, θ) ≥ δ

}

. (4.30)

By the choice of K , we have

ã(φ, θ) ≥ δ

2
Zi j , (φ, θ) ∈ Di × Dj . (4.31)
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We will now show that Z is fully indecomposable by proving that if there are two sets I and
J such that Zi j = 0, for all i ∈ I and j ∈ J , then

|I | + |J | ≤ K − 1. (4.32)

Denoting DI := ∪i∈I Di , we have ã(φ, θ) ≤ δ for (φ, θ) ∈ DI × DJ . Thus (4.28) implies

|I |
K

= |DI | ≤ ε, and
|J |
K

= |DI | ≤ ε. (4.33)

Choosing ε ≤ 1/3 we see that |I | + |J | ≤ (2/3)K , and (4.32) follows. Since Z is a fully
indecomposable matrix we see that ˜A is block fully indecomposable. ��
Lemma 4.4 (Expected decay of off-diagonal resolvent entries) If A satisfies (R0), in addi-
tion to (D1) or (D2), then (2.13) holds with the constant C depending only on the model
parameters.

Proof Recall from Lemma 4.1 that m̃(z) is the bounded solution of the continuous QVE
(4.4). We will first prove that

q̃x (z) := 〈ex , m̃(z)〉, x ∈ Z, (4.34)

satisfies

|̃qx (z)| �
{

|x |−κ when (2.4) holds;

e−ν′|x | when (2.5) holds;
x ∈ Z, (4.35)

where ex is the Fourier-basis function. Then we show that qx (z) and q̃x (z) are so close that
(2.13) holds.

Let us first assume that A is exponentially decaying, i.e., (D2) holds. Let us periodically
extend the kernel function ã : [0, 1]2 → [0,∞) from (4.1) to all of R2. From (2.5) it follows
that ã can be further analytically extended to the product of complex strips R2

ν/2 (cf. (4.24)),
where ν > 0 is the exponent from (2.5). We will now show that q̃x (z) decays exponentially
in this case. To see this we consider the function �(z) : Rν → C, defined by

�(z; ζ ) := −
(

z +
∫ 1

0
ã(ζ, φ)m̃(z;φ)dφ

)−1

. (4.36)

In particular, it follows that m̃(z;φ) = �(z;φ) for every φ ∈ [0, 1]. Because ã is uniformly
continuous and the expression inside the parenthesis on the right hand side of (4.36) is
bounded away from zero by a constant comparable to (supz‖m̃(z)‖∞)−1 when ζ ∈ R, there
exists a constant ν′ < ν such that |�(z; ζ )| ≤ C0 for ζ ∈ Rν′ . Since ã : R2

ν′ → C is analytic
also �(z) : Rν′ → C is analytic. For any x ∈ Z we thus get by a contour deformation

e2πν′x q̃x (z) = e2πν′x 〈ex , m̃(z)〉 =
∫ 1

0
e−i2πx(φ+iν′) �(z;φ)dφ

=
∫ 1

0
e−i2νxφ �(z;φ − iν′)dφ, (4.37)

where the integrals over the vertical line segments joining±1 and±1− iν′ cancel each other
due to periodicity of the integrand in the horizontal direction. Since x ∈ Z was arbitrary,
taking absolute values of (4.37) yields the exponential decay:

|̃qx (z)| ≤
(

sup
ζ∈Rν′

|�(z; ζ )|
)

e−2πν′|x | ≤ C0e
−2πν′|x |, x ∈ Z. (4.38)
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Next we prove that (D1) implies |̃qx (z)| � |x |−κ . To this end let ∂ denote the derivative
w.r.t. the variable in [0, 1]. Using ex (φ) = ei2πxφ we get for any k ∈ N:

|x |k |̃qx (z)| = (2π)−k
∣

∣

∣〈∂kex , m̃(z)〉
∣

∣

∣ (4.39)

= (2π)−k
∣

∣

∣〈ex , ∂km̃(z)〉
∣

∣

∣ ≤ ‖∂km̃(z)‖∞, ∀x ∈ Z.

Thus, we need to show that ‖∂κ m̃(z)‖∞ � 1 uniformly in z. The proof is by induction on
the number of derivatives of m̃. It is based on

∂km̃(z;φ) = ∂k−1
φ

(

m̃(z;φ)2
∫ 1

0
m̃(z; θ)∂φ ã(θ, φ)dθ

)

,

which follows from (4.9), and the following consequence of (2.4):

κ
max
j=0

sup
φ,θ∈[0,1]

∣

∣∂
j

φ ã(φ, θ)
∣

∣ � 1. (4.40)

As the second step of the proof we show that
∣

∣q̃x (z) − qx (z)
∣

∣ � N−1/2, |x | ≤ N/2 + 1, (4.41)

where we represent T by integers x satisfying |x | ≤ N/2+ 1. Combining (4.41) with (4.35)
yields (2.13). To get (4.41) we use (4.6) and (4.7) to obtain

∣

∣q̃x (z) − qx (z)
∣

∣ ≤
∣

∣

∣

∣

∫ 1

0
e−i2πxφm̃(z;φ)dφ − 1

N

∑

θ∈S
e−i2πxθmθ (z)

∣

∣

∣

∣

(4.42)

≤
N−1
∑

j=0

∫ ( j+1)/N

j/N

∣

∣

∣ e−i2πxφm̃(z;φ) − e−i2πx j
N m j/N (z)

∣

∣

∣ dφ

�
1 + |x |

N
+ 1

N 1/2 .

This proves (4.41) for |x | ≤ N 1/2.
For |x | ≥ N 1/2 we bound qx = qx (z) directly by using the summation of parts

qx = 1

N

N−1
∑

j=0

e−i2πx j
N m j/N = − 1

N

N−2
∑

j=1

(

m( j+1)/N − m j/N

)
j

∑

k=0

e−i2πx k
N + O

(

1

N

)

,

where we have dropped two boundary terms of size O(N−1). Here,
∣

∣m( j+1)/N − m j/N
∣

∣ ≤
C/N , while the geometric sum is O(N/x) = O(N 1/2) for N 1/2 ≤ |x | ≤ N/2 + 1. Thus,
estimating each term in the sum over j separately shows that |qx (z)| � N−1/2 also in this
case. ��

Next we show that the probability density ρ corresponding to the discrete QVE, via (2.14),
is also regular and supported on a single interval.

Proof of Proposition 2.3 Uniform boundedness of m follows from Lemma 4.1. The other
statements concerning the density ρ follow by using Theorems 1.1, 1.2, and 1.9 from [1]. As
an input for Theorem 1.9 in [1], which shows that the support of ρ is a single interval, we
use

sup
D⊂S

inf
φ1∈D
φ2 /∈D

∑

θ∈S

∣

∣âφ1,θ − âφ2,θ

∣

∣ ≤ C

N
+ sup

D⊂[0,1]
inf

φ1∈D
φ2 /∈D

∥

∥ã(φ1, • ) − ã(φ2, • )
∥

∥

1 �
1

N
.
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The first bound follows from
∣

∣Nâφθ − ã(φ, θ)
∣

∣ ≤ CN−1. The last bound follows from
(4.11). The components qx (z) inherit their analyticity trivially from m(z) since the sum in
the definition (2.12) of qx (z) is absolutely summable. ��

5 Proofs for Local Law and Bulk Universality

The following is the strongest version of the local law we prove here.

Proposition 5.1 (Local law) Let H and A be related by (2.3b). Assume that A satisfies (R0)
and (D1). Then the conclusions of Theorem 2.2 hold.

Proof of Theorem 2.2 If (D1) and (R2) are assumed, then (R0) holds with ξ0 = ξ2 and
D = {[0, 1]}, and Proposition 5.1 yields the proof. If on the other hand, (D2) and (R1) are
assumed, then (R0) holds by Lemma 4.2. The proof is hence again reduced to Proposition 5.1.

��
Proof of Proposition 5.1 By Lemma 3.2 the Fourier transform ̂H of H has the correlation
structure (3.4). In particular, ̂H is fourfold correlated (Definition 3.1). Moreover, from (3.4b)
we read off that

Êhφθ
̂h−θ,φ = 0, ∀ φ, θ ∈ S, φ �= θ.

Hence the local law for fourfold correlated matrices, Theorem 3.3, with ̂H and̂A playing the
roles of H and S, applies. In particular, (2.11b) follows.

In order to get (2.11a) we use the anisotropic local law (Theorem 3.4). Indeed, fix two
arbitrary elements x and y of T and define two unit vectors v and w of CT by setting

vφ := N−1/2ei2πxφ and wθ := N−1/2ei2πyθ , ∀φ, θ ∈ S.

From (3.1) and (2.12) we see that

Gxy(z) = v · ̂G(z)w and qx−y(z) = v · diag(m(z))w,

where v · w = ∑

i viwi . Thus the anisotropic local law (3.11) implies (2.11a). The decay
estimate (2.13) for qx is already proven in Lemma 4.4. ��

Next we show that the eigenvalues of H satisfy also the bulk universality provided the
elements of hi j contain a small Gaussian GOE/GUE component.

Proof of Corollary 2.4 We will show that there exists a Gaussian random matrix H(0) and a
GOE/GUE matrix U that is independent of H(0), such that the Gaussian random matrix

H = H(0) +
√

ε

2
U, (5.1)

where ε > 0 equals either ξ2 or ξ3 depending on the symmetry class, satisfies (2.3). The
matrix H(0) is such that Theorem 2.2 is applicable since the associated correlation matrix
A(0) satisfies (D1) and (R2). In particular, the eigenvalues of H(0) satisfy the rigidity estimate
(1.33) of Corollary 1.10 in [2]. Here we note that the corollary holds trivially for the fourfold
correlated matrix as its proof depends only on the local law and not on the dependence
structure of H(0). The bulk universality is hence proven exactly the same way as Theorem
1.15 in [2], using the method of [15].
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Let us first consider the case where H is real symmetric. In this case, the equations (2.3)
hold with B = A. Comparing this with the GOE correlation structure,

E ui j ukl = 1

N
(�i−k, j−l + �i−l, j−k), �xy := δx0δy0,

we see that U also satisfies (2.3) with U and � in place of H and A = B, respectively.
Applying Lemma 3.2 and using ̂�φθ = N−1 we obtain the representation,

̂hφθ = √

Nâφθ v̂φθ , (5.2)

where v̂φθ are the components of the Fourier transform of some GOE matrix V. Using this
representation we can identify the matrix H(0) in (5.1). Namely, we define it in Fourier-
coordinates,

̂h(0)
φθ :=

√

Nâφθ − ε

2
v̂

(0)
φθ , (5.3)

where the term in the square root is bounded frombelowby ε/2by the assumption âφθ ≥ ε/N ,
andV(0) is a GOE randommatrix that is independent ofU. SinceH(0) andU are independent

̂hφθ := ̂h(0)
φθ +

√

ε

2
ûφθ ,

satisfy (3.4). This immediately yields (2.3) for the matrix (5.1).
Next we consider the case where H is complex self-adjoint. First we remark that for a

given pair of hermitian matrices (A, B) there exists a randommatrix H satisfying (2.3) if and
only if the following hold in the Fourier-space:

âφθ ≥ 0, ̂b−φ,−θ = ̂bφθ , and
∣

∣̂bφθ

∣

∣ ≤ √

âφθ â−φ,−θ, ∀φ, θ ∈ S. (5.4)

The necessity of these conditions follow from âφθ = E
∣

∣̂hφθ

∣

∣

2
, ̂bφθ = Êhφθ

̂h−φ,−θ (cf.
(3.4b)), and the Cauchy–Schwartz inequality,

̂bφθ ≤
√

E
∣

∣̂hφθ

∣

∣

2
√

E
∣

∣̂h−φ,−θ

∣

∣

2 ≤ √

âφθ â−φ,−θ, φ �= −θ.

If θ = −φ, then the identity holds by definition. In order to see that (5.4) is also a sufficient
condition for there to exists a randommatrix H satisfying (2.3) we consider a fixed index pair
(φ, θ) ∈ S

2. From the hermitian symmetry and Lemma 3.2 it follows that the two elements
̂hφ,θ and ̂h−φ,−θ determine the four entries of ̂H that may depend on ̂hφ,θ . It is now easily
checked that a given 4×4-real matrix� can be a correlation matrix of the real random vector

x := (

Rêhφ,θ ,Rêh−φ,−θ , Im̂hφ,θ , Im̂h−φ,−θ

)

,

if and only if it is positive-semidefinite. A simple computation reveals that � is positive
semi-definite if and only if the third condition of (5.4) holds.

Assume now that A and B satisfy (2.16) for some ε > 0. Let us define A(0), by

â(0)
φθ := âφθ − ε

2
, ∀ φ, θ ∈ S.

From (2.16) we see that â(0)
φθ ≥ ε/2. Since (̂A

(0)
,̂B) satisfies (5.4), with ̂A

(0)
in place of ̂A,

there exists a random matrix ̂H
(0)

such that (3.4) holds with ̂H
(0)

and ̂A
(0)

in place of ̂H
and ̂A, respectively. Let U be a GUE matrix so that (2.3) holds with (U,�, 0) in place of
(H, A, B). Since ̂�φθ = N−1 we see that the Fourier transform of the random matrix (5.1)
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satisfies (3.4) provided we choose U to be independent of H(0). This is equivalent to (2.3)
and the proof is complete. ��

From the proof of Corollary 2.4 we read off the convolution representation for symmetric
translation invariant random matrices.

Proof of Lemma 2.6 The assumption (2.17) implies âφθ ≥ 0. This guarantees that ̂H defined
through (5.2) is self-adjoint. Expressing (5.2) in the original coordinates yields the represen-
tation (2.18). ��
Proof of Corollary 2.5 Given the anisotropic local law (3.11) and the uniform boundedness
(Lemma 4.1) of the solution m of the QVE (2.9), the delocalization of the eigenvalues is
proven exactly the same way as Corollary 1.13 in [2]. ��
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Appendix

Proof of Lemma 4.3 Let K be an open and simply connected set with a smooth boundary,
such that

[0, 1] ⊂ ∂K, and (0, 1) + i
(

0, 2
3ν

) ⊂ K ⊂ (−1, 2) + i
(

0, 2
3ν

)

. (6.1)

Since K is in R2ν/3 and f is bounded and analytic on Rν , the assumption (4.25) implies

| f (ξ) − f (ζ )| ≤ C2 |ξ − ζ | , ∀ξ, ζ ∈ K, (6.2)

where C2 < ∞ does not depend on f . From the first inclusion of (6.1) it follows that
∣

∣

{

φ ∈ [0, 1] : | f (φ)| < δ
}∣

∣ ≤ ∣

∣

{

ζ ∈ ∂K : | f (ζ )| < δ
}∣

∣, (6.3)

where |A| denotes the Lebesgue measure of A ⊂ R. We will prove (4.26) by estimating the
size of the set on the right.

Let us denote the complex unit disk by D := {ζ ∈ C : |ζ | < 1}, and let ζ0 ∈ K be
arbitrary. By the Riemann mapping theorem there exists a bi-holomorphic conformal map
�ζ0 : C → C satisfying

�ζ0(D) = K and �ζ0(0) = ζ0. (6.4)

Since the simple connected sets D and K have smooth boundaries the conformal map �ζ0

extends to the boundary, such that �(∂D) = ∂K, with uniformly bounded derivatives. In
particular, we have

1

C3(ζ0)
≤ ∣

∣∂�ζ0(ζ )
∣

∣ ≤ C3(ζ0), ζ ∈ D, (6.5)
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with the constant C3(ζ0) < ∞ independent of f , in fact it depends only on ζ0 through the
distance dist(ζ0, ∂K). From the second estimate of (4.25) we know that there are points on
[0, 1] ⊂ ∂K where | f | ≥ 1. Hence using the continuity (6.2) we may choose ζ0 ∈ K such
that

| f (ζ0)| ≥ 1

2
and dist(ζ0, ∂K) ≥ min

{

1

2C2
,

ν

3

}

. (6.6)

Let log+ and log− be the positive and negative parts of the logarithm, respectively, so that
log τ = log+ τ − log− τ , for τ > 0. Using Chebyshev’s inequality we get

∣

∣

{

ζ ∈ ∂K : | f (ζ )| < δ
}∣

∣ ≤ 1

log− δ

∫

∂K

log− | f (ζ )| |dζ | .

By parametrizing the boundary of K using the conformal map �ζ0 we get

∣

∣

{

ζ ∈ ∂K : | f (ζ )| < δ
}∣

∣ ≤ 1

log− δ

∫ 2π

0
log−

∣

∣ f (�ζ0(e
iτ ))

∣

∣

∣

∣∂�ζ0(e
iτ )

∣

∣ dτ.

Using (6.5) to bound the derivative and writing ˜f := f ◦ �ζ0 we get

∣

∣

{

ζ ∈ ∂K : | f (ζ )| < δ
}∣

∣ ≤ C3(ζ0)

log− δ

∫ 2π

0
log−

∣

∣ ˜f (eiτ )
∣

∣ dτ. (6.7)

We will now bound the last integral using the Jensen-Poisson formula,

log
∣

∣ ˜f (0)
∣

∣ = 1

2π

∫ 2π

0
log

∣

∣ ˜f (eiτ )
∣

∣ dτ −
n

∑

j=1

log
1

∣

∣α j
∣

∣

,

where α j ’s are the zeros of ˜f in the unit disk D. The last sum is always non-negative since
|αi | ≤ 1 and can be dropped. By splitting the integral into positive and negative parts we
obtain an estimate for the integral on the right hand side of (6.7)

∫ 2π

0
log−

∣

∣ ˜f (eiτ )
∣

∣ dτ ≤ 2π log
1

∣

∣ ˜f (0)
∣

∣

+
∫ 2π

0
log+

∣

∣ ˜f (eiτ )
∣

∣ dτ

≤ 2π log 2 + 2π log sup
ω∈D

∣

∣ ˜f (ω)
∣

∣

≤ 2π log 2C1,

where we have used (6.6) to get the second inequality. For the last bound we have used
∣

∣ ˜f (ω)
∣

∣ = ∣

∣ f (�ζ0(ω))
∣

∣ ≤ C1. Plugging this into (6.7) and recalling (6.3) we get

∣

∣

{

φ ∈ [0, 1] : | f (φ)| < δ
}∣

∣ ≤ 2πC3(ζ0) log 2C1

log(1/δ)
.

This finishes the proof as C3(ζ0) and C1 are independent of δ.
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