338 research outputs found
Analysis of the October 3–7 2000 GEM storm with the WINDMI model
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95446/1/grl20167.pd
Simulation of magnetic cloud erosion during propagation
We examine a three‐dimensional (3‐D) numerical magnetohydrodynamic (MHD) simulation describing a very fast interplanetary coronal mass ejection (ICME) propagating from the solar corona to 1 AU. In conjunction with its high speed, the ICME evolves in ways that give it a unique appearance at 1 AU that does not resemble a typical ICME. First, as the ICME decelerates far from the Sun in the solar wind, filament material at the back of the flux rope pushes its way forward through the flux rope. Second, diverging nonradial flows in front of the filament transport poloidal flux of the rope to the sides of the ICME. Third, the magnetic flux rope reconnects with the interplanetary magnetic field (IMF). As a consequence of these processes, the flux rope partially unravels and appears to evolve to an entirely unbalanced configuration. At the same time, filament material at the base of the flux rope moves forward and comes in direct contact with the shocked plasma in the CME sheath. We find evidence that such remarkable behavior has actually occurred when we examine a very fast CME that erupted from the Sun on 2005 January 20. In situ observations of this event near 1 AU show very dense cold material impacting the Earth following immediately behind the CME sheath. Charge state analysis shows this dense plasma is filament material. Consistent with the simulation, we find the poloidal flux ( B z ) to be entirely unbalanced, giving the appearance that the flux rope has eroded. The dense solar filament material and unbalanced positive IMF B z produced a number of anomalous features in a moderate magnetic storm already underway, which are described in a companion paper by Kozyra et al. (2014). Key Points Filament material can move to the front of ICMEs Flux rope erosion can occur by azimuthal transport of poloidal fluxPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108271/1/jgra51093.pd
Guided Plasmaspheric Hiss Interactions with Superthermal Electrons
Under the proper conditions, guided plasmaspheric hiss is shown to be more efficient than Coulomb collisions at scattering electrons in the superthermal energy range of 50 to 500 eV. Broadband, whistler mode hiss becomes guided by plasma density gradients, intensifying the wave energy densities and focusing the wave normal angles. These waves are shown to interact through Cherenkov (Landau) resonance with electrons below 500 eV, and the presented equatorial plane timescales for pitch angle, energy, and mixed diffusion are shown to be faster than Coulomb collision timescales for typical values at the inner edge of the plasmapause and in detached plasma regions. In the latter case, energy diffusion timescales of less than 100 s for small pitch angle electrons between 250 and 500 eV indicate that these waves have the potential to dramatically change the distribution function
Carbon dioxide capture enhanced by pre-adsorption of water and methanol in UiO-66
The rapidly rising level of carbon dioxide in the atmosphere resulting from human activity is one of the greatest environmental problems facing our civilization today. Most technologies are not yet sufficiently developed to move existing infrastructure to cleaner alternatives. Therefore, techniques for capturing carbon dioxide from emission sources may play a key role at the moment. The structure of the UiO‐66 material not only meets the requirement of high stability in contact with water vapor but through the water pre‐adsorbed in the pores, the selectivity of carbon dioxide adsorption is increased. We successfully applied the recently developed methodology for water adsorption modelling. It allowed to elucidate the influence of water on CO(2) adsorption and study the mechanism of this effect. We showed that water is adsorbed in octahedral cage and stands for promotor for CO(2) adsorption in less favorable space than tetrahedral cages. Water plays a role of a mediator of adsorption, what is a general idea of improving affinity of adsorbate. On the basis of pre‐adsorption of methanol as another polar solvent, we have shown that the adsorption sites play a key role here, and not, as previously thought, only the interaction between the solvent and quadrupole carbon dioxide. Overall, we explained the mechanism of increased CO(2) adsorption in the presence of water and methanol, as polar solvents, in the UiO‐66 pores for a potential post‐combustion carbon dioxide capture application
Reply to comment by R. M. Thorne and R. B. Horne on Khazanov et al. [2002] and Khazanov et al. [2006]
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95096/1/jgra18925.pd
Plasma properties of superstorms at geosynchronous orbit: How different are they?
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94769/1/grl23868.pd
Reply to "Comment on 'A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic Ion Cyclotron Waves, Initial Results: Waves and Precipitation Fluxes' and 'Self-Consistent Model of the Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves: Waves in Multi-Ion Magnetosphere' by Khazanov et al. et al."
It is well-known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wavenormal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and[ particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002, 2006, 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. Thome and Home [2007] (hereafter referred to as TH2007) call the Khazanov et al. [2002, 2006] results into question in their Comment. The points in contention can be summarized as follows. TH2007 claim that: (1) "the important damping of waves by thermal heavy ions is completely ignored", and Landau damping during resonant interaction with thermal electrons is not included in our model; (2) EMIC wave damping due to RC O + is not included in our simulation; (3) non-linear processes limiting EMIC wave amplitude are not included in our model; (4) growth of the background fluctuations to a physically significantamplitude"must occur during a single transit of the unstable region" with subsequent damping below bi-ion latitudes,and consequently"the bounce averaged wave kinetic equation employed in the code contains a physically erroneous 'assumption". Our reply will address each of these points as well as other criticisms mentioned in the Comment. TH2007 are focused on two of our papers that are separated by four years. Significant progress in the self-consistent treatment of the RC-EMIC wave system has been achieved during those years. The paper by Khazanov et al. [2006] presents the latest version of our model, and in this Reply we refer mostly to this paper
Absolute Present, Zen and Schrödinger’s One Mind
Erwin Schrödinger holds a prominent place in the history of science primarily due to his crucial role in the development of quantum physics. What is perhaps lesser known are his insights into subject-object duality, consciousness and mind. He documented himself that these were influenced by the Upanishads, a collection of ancient Hindu spiritual texts. Central to his thoughts in this area is that Mind is only One and there is no separation between subject and object. This chapter aims to bridge Schrödinger’s view on One Mind with the teachings of Dōgen, a twelfth century Zen master. This bridge is formed by addressing the question of how time relates to One Mind, and subject-object duality. Schrödinger describes the experience of One Mind to be like a timeless now, whereas subject-object duality involves a linear continuum of time. We show how these differing positions are unified in the notion of ‘absolute present’, which was put forward in the philosophy of Nishida Kitarō (1871–1945). In addition, we argue that it is in this notion of absolute present that the views of Schrödinger, Dōgen and Nishida meet
Self-consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 2. Wave Induced Ring Current Precipitation and Thermal Electron Heating
This paper continues presentation and discussion of the results from our new global self-consistent theoretical model of interacting ring current ions and propagating electromagnetic ion cyclotron waves [Khazanov et al., 2006]. To study the effects of electromagnetic ion cyclotron wave propagation and refraction on the wave induced ring current precipitation and heating of the thermal plasmaspheric electrons, we simulate the May 1998 storm. The main findings after a simulation can be summarized as follows. Firstly, the wave induced ring current precipitation exhibits quite a lot of fine structure, and is highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 x 10(exp 6) (cm(raised dot) s(raised dot) sr(raised dot) (sup -1)) are observed during the maill and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not connected to the most intense waves in simple manner. The characteristics of the wave power spectral density distribution over the wave normal angle are extremely crucial for the effectiveness of the ring current ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from RAM [Kozyra et al., 1997a] reveals that although we observe a qualitative agreement between the localizations of the wave induced precipitations in the models, there is no quantitative agreement between the magnitudes of the fluxes. The quantitative differences are mainly due to a qualitative difference between the characteristics of the wave power spectral density distributions over the wave normal angle in RAM and in our model. Thirdly, the heat fluxes to plasmaspheric electrons caused by Landau resonate energy absorption from electromagnetic ion cyclotron waves are observed in the postnoon-premidnight MLT sector, and can reach the magnitude of 10(exp 11) eV/(cm(sup 2)(raised dot)s). The Coulomb energy degradation of the RC H(+) and O(+) ions maximizes at about 10(exp 11) (eV/(cm(sup 2) (raised dot) s), and typically leads to electron energy deposition rates of about 2(raised dot) 10(exp 10) (eV/(cm(sup 2)(raised dot)s) which are observed during two periods; 32-48 hours, and 76-86 hours after 1 May, 0000 UT. The theoretically derived spatial structure of the thermal electron heating caused by interaction of the ring current with the plasmasphere is strongly supported by concurrent and conjugate plasma measurements from the plasmasphere, ring current, and topside ionosphere [Gurgiolo et al., 2005]. Finally, the wave induced intense electron heating has a structure of the spot-like patches along the most enhanced density gradients in the plasmasphere boundary layer and can be a possible driver to the observed but still not explained small-scale structures of enhanced emissions in the stable auroral red arcs
Adiabatic energization in the ring current and its relation to other source and loss terms
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94822/1/jgra16175.pd
- …