13 research outputs found
İşlemci soğutmada mikrokanal ısı alıcıların tasarımı, üretimi ve deneysel incelenmesi.
A novel complementary metal oxide semiconductor (CMOS) compatible microchannel heat sink is designed, fabricated, and tested for electronic cooling applications. The proposed microchannel heat sink requires no design change of the electronic circuitry underneath. Therefore, microchannels can be fabricated on top of the finished CMOS wafers by just adding a few more steps to the fabrication flow. Combining polymer (parylene C) and metal (copper) structures, a high performance microchannel heat sink can be easily manufactured on top of the electronic circuits, forming a monolithic cooling system. In the design stage, computer simulations of the microchannels with several different dimensions have been performed. Microchannels made of only parylene showed poor heat transfer performance as expected since the thermal conductivity of parylene C is very low. Therefore an alternative design comprising structural parylene layer and embedded metal layers has been modeled. Copper is selected as the metal due to its simple fabrication and very good thermal properties. The results showed that the higher the copper surface area the better the thermal performance of the heat sinks. Based on the modeling results, the final test structures are designed with full copper sidewalls with a parylene top wall. Several different microchannel test chips have been fabricated in METU-MEMS Research & Application Center cleanroom facilities. The devices are tested with different flow rates and heat loads. During the tests, it was shown that the test devices can remove about 126 W/cm2 heat flux from the chip surface while keeping the chip temperature at around 90°C with a coolant flow rate of 500 μl/min per channel.M.S. - Master of Scienc
An electrostatic parylene microvalve for controlling in plane flow
This paper presents analysis, implementation, and testing of a new and simple electrostatic microvalve for in-plane flow manipulation. The reported microvalve implements electrostatic pull-in of a parylene diaphragm located parallel to the flow
An Electrostatic Parylene Microvalve for Lab-on-a-Chip Applications
Bu bildiri, yüzey mikro işleme yöntemleriyle, çip-üstülaboratuvar (lab-on-a-chip) uygulamaları için üretilmiş yeni bir elektrostatik tahrikli mikro kapak tasarımını ve üretimini anlatmaktadır. Çip-üstü-laboratuvar uygulamaları genellikle düzlem içi mikro akışlar içermektedir. Burada anlatılan mikro kapak, düzlem içi akışa paralel bir diyaframın, elektrostatik kuvvetler yardımıyla akış yönüne dik olarak hareket ettirilmesi yöntemiyle çalışmaktadır. Bildiride, mikro kapağın çalışma prensipleri sunulmuş, kapağın çalışması gösterilmiştir.This paper presents a novel electrostatically actuated microvalve for lab-on-a-chip applications, fabricated using surface micromachining techniques. Lab-on-a-chip applications generally involve in-plane microflows. Microvalve mentioned here operates by moving a diaphragm, which is in-plane with the flow, perpendicular to the stream with the help of electrostatic forces. Operating principles and the operation of the valve are presented in the paper
CMOS compatible microchannel heat sink for cooling electronic components and its fabrication
The present invention is a CMOS compatible polymer microchannel heat sink for electronic cooling applications. The heat sink can be fabricated directly on the chip surface with an insulation layer by standard polymer surface micromachining techniques. The heat sink device comprises a thin insulation layer on the chip surface, a thin-film metal layer as bottom surface, metal side walls, and a polymer top wall over the microchannels and inlet-outlet reservoirs
Elektronik soğutma için cmos uyumlu mikrokanal ısı alıcısı ve üretim yöntemi
Bu buluş elektronik soğutma uygulamaları için kullanılabilecek bir CMOS uyumlu metal-polimer mikrokanallı ısı alıcısıdır. Isı alıcı, standart yüzey mikroişleme teknikleri kullanılarak, direk olarak elektronik devrenin yalıtılmış üst yüzeyi üzerinde üretilmektedir. Isı alıcı devre üzerindeki ince yalıtkan tabaka, bu tabaka üzerindeki kanal alt yüzeyi oluşturan ince metal tabaka, metal yan duvarlar, polimer üst duvardan ve giriş-çıkış rezervuarlarından oluşmaktadır
NANO AKIŞKAN GEÇİŞLİ MİKROKANALLI ISI ALICILARIN MEMS TEKNOLOJİSİ İLE ÜRETİMİ VE MİKROÇİP SOĞUTULMASINDA KULLANIMI
Bu proje kapsamında, yüksek alan/hacim oranları sayesinde geleneksel hava
soğutma yöntemlerine göre çok daha etkin soğutma sağlayan mikrokanallı ısı
alıcıların mikroçip soğutulmasındaki performansları incelenmiştir. Literatürde sunulan örneklerden farklı olarak, CMOS (Complementary Metal Oxide Semiconductor: Bütünleyici Metal Oksit Yarıiletken) entegre devre tasarım süreci ile uyumlu, özgün bir MEMS üretim tekniği kullanılarak, monolitik (tek tabanlı) bir mikrosoğutma sistemi elde edilmiştir. Bu sayede, CMOS uyumlu mikro-soğutma sistemlerinin, entegre devreleriyle birlikte üretilmesinin yolu açılmıştır. İlk test sonuçları ışığında, soğutma kapasitesini artırmak amacıyla mikrokanalların tasarımları geliştirilmiş, üretim yinelenmiştir. Soğutma deneyleri, mikrokanalların altına yerleştirilen, birim alan başına ürettiği ısı miktarları bilinen mikro ısıtıcılar ile gerçekleştirilmiştir. Soğutucu akışkan olarak öncelikle de-iyonize su kullanılmış; noktasal ısı kaynağını temsil eden devrelerden
127 W/cm2’ye, tamamı ısıtılan devrelerden 75 W/cm2’ye kadar ısı akısı sistemlerden
uzaklaştırılabilmiştir. Nusselt sayısı ve sürtünme katsayısının Reynolds sayısına göre
değişimi, literatürde benzer koşullar için verilen sonuçlarla uyum göstermiştir. Deneylerin son aşamasında suyun yanında, gümüş ve altın nanoparçacıklar içeren nano akışkanlar kullanılmıştır. Mekanizması tam olarak bilinmemekle birlikte, nano akışkanlar, kendilerini oluşturan temel akışkanlara oranla çok daha yüksek ısıl iletkenlikleri ve artan ısı transfer yüzey alanı sayesinde mikrokanallarla ortamdan uzaklaştırılan ısı miktarında önemli ölçüde artış sağlayabilmektedirler. Bu çalışma ile,
nano akışkanların mikrokanallı ısı alıcılar ile kullanıldıklarında gösterdikleri performans da incelenmiştir
Multi-channel thin film piezoelectric acoustic transducer for cochlear implant applications
This paper presents a multi-channel piezoelectric acoustic transducer that is working within the audible frequency band (250- 5500 Hz). The transducer consists of eight cantilevers with thin film PLD-PZT piezoelectric layers. The transducer is well suited to be implanted in middle ear cavity with an active volume of 5x5x0.6 mm(3) and mass of 4.8 mg excluding the test frame. Finite Element Method (FEM) is used for modelling cantilever resonance frequencies and piezoelectric outputs. This model and shaker-table experiments are in good agreement on the frequency (97%) and output voltage (89%) values. Transducer can generate up to 139.36 mV(pp) under 0.1 g excitation at 316 Hz, which is the highest reported output voltage from a piezoelectric acoustic sensor to the best of our knowledge
Hybrid energy harvester using piezoelectric and pyroelectric properties of PZT 5A ceramics
This paper presents a novel hybrid piezoelectric-pyroelectric energy harvester using a cantilever beam with a PZT tip mass. The cantilever is moving between two surfaces with different temperatures under external vibration. PZT ceramic is used as the piezoelectric material, which also has pyroelectric characteristics. By using the pyroelectric effect along with the piezoelectric one, the output RMS voltage of the PZT ceramic was enhanced up to 10% under 50°C ΔT
Gold-in-Water Nanofluids in Microchannels: Surfactant Effect
Heat transfer and pressure drop performance of gold-in-water nanofluids in microchannels are experimentallyinvestigated. Gold nanoparticles are suspended in de-ionized (DI) water. The nanofluid stability is maintained bypolyvinylpyrrolidone (PVP) for over 4 years. Nanofluids are tested in rectangular, MEMS produced coppermicrochannels of 70 μm x 50 μm cross-sectional area in a very low Reynolds number range of 30 < Re < 50.The performances of DI-water, PVP added DI-water, and gold-in-water nanofluid with added PVP arecompared. The nanofluids always yielded a higher heat transfer coefficients than PVP-DI water solution. Foroccasional combinations of the particle size, volumetric concentration and flow rate, gold nanofluids yieldedhigher heat transfer coefficients compared to DI water as well. The effects of flow rate and particle size on thefigure of merit (FM) are presented. The study is rare in dealing with pure metals (gold), and is important inemphasizing the surfactant effects on stable duration of nanofluids, and their thermal performance
Bulk PZT Cantilever Based MEMS Acoustic Transducer for Cochlear Implant Applications
This paper presents the first acoustic experimental results of a MEMS based bulk piezoelectric transducer for use in fully implantable cochlear implants (FICI). For this purpose, the transducer was attached onto an acoustically vibrating membrane. Sensing and energy harvesting performances were measured using neural stimulation and rectifier circuits, respectively. The chip has a 150 Hz bandwidth around 1800 Hz resonance frequency that is suitable for mechanical filtering as a sensor. As an energy harvester, bulk piezoelectric transducer generated a rectified power of 16.25 μW with 2.47 VDC with 120 dB-A sound input at 1780 Hz. Among other MEMS acoustic energy harvesters in the literature, reported transducer has the highest power density (1.5 × 10−3 W/cm3) to our knowledge