14 research outputs found

    Estimates of Particulate Organic Carbon Flowing from the Pelagic Environment to the Benthos through Sponge Assemblages

    Get PDF
    Despite the importance of trophic interactions between organisms, and the relationship between primary production and benthic diversity, there have been few studies that have quantified the carbon flow from pelagic to benthic environments as a result of the assemblage level activity of suspension-feeding organisms. In this study, we examine the feeding activity of seven common sponge species from the Taputeranga marine reserve on the south coast of Wellington in New Zealand. We analysed the diet composition, feeding efficiency, pumping rates, and the number of food particles (specifically picoplanktonic prokaryotic cells) retained by sponges. We used this information, combined with abundance estimates of the sponges and estimations of the total amount of food available to sponges in a known volume of water (89,821 m3), to estimate: (1) particulate organic carbon (POC) fluxes through sponges as a result of their suspension-feeding activities on picoplankton; and (2) the proportion of the available POC from picoplankton that sponges consume. The most POC acquired by the sponges was from non-photosynthetic bacterial cells (ranging from 0.09 to 4.69 g C d−1 with varying sponge percentage cover from 0.5 to 5%), followed by Prochlorococcus (0.07 to 3.47 g C d−1) and then Synechococcus (0.05 to 2.34 g C d−1) cells. Depending on sponge abundance, the amount of POC that sponges consumed as a proportion of the total POC available was 0.2–12.1% for Bac, 0.4–21.3% for Prochlo, and 0.3–15.8% for Synecho. The flux of POC for the whole sponge assemblage, based on the consumption of prokaryotic picoplankton, ranged from 0.07–3.50 g C m2 d−1. This study is the first to estimate the contribution of a sponge assemblage (rather than focusing on individual sponge species) to POC flow from three groups of picoplankton in a temperate rocky reef through the feeding activity of sponges and demonstrates the importance of sponges to energy flow in rocky reef environments

    Reduced Diversity and High Sponge Abundance on a Sedimented Indo-Pacific Reef System: Implications for Future Changes in Environmental Quality

    Get PDF
    Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded) and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning. © 2014 Powell et al

    Factors That Influence Elastomeric Coating Performance: The Effect of Coating Thickness on Basal Plate Morphology, Growth and Critical Removal Stress of the Barnacle \u3cem\u3eBalanus amphitrite\u3c/em\u3e

    Get PDF
    Silicone coatings are currently the most effective non-toxic fouling release surfaces. Understanding the mechanisms that contribute to the performance of silicone coatings is necessary to further improve their design. The objective of this study was to examine the effect of coating thickness on basal plate morphology, growth, and critical removal stress of the barnacle Balanus amphitrite. Barnacles were grown on silicone coatings of three thicknesses (0.2, 0.5 and 2 mm). Atypical (“cupped”) basal plate morphology was observed on all surfaces, although there was no relationship between coating thickness and i) the proportion of individuals with the atypical morphology, or ii) the growth rate of individuals. Critical removal stress was inversely proportional to coating thickness. Furthermore, individuals with atypical basal plate morphology had a significantly lower critical removal stress than individuals with the typical (“flat”) morphology. The data demonstrate that coating thickness is a fundamental factor governing removal of barnacles from silicone coatings

    Antifouling Character of \u27Active\u27 Hybrid Xerogel Coatings with Sequestered Catalysts for the Activation of Hydrogen Peroxide

    Get PDF
    Halide-permeable xerogel films prepared from sols containing 50 mol% aminopropyltriethoxysilane (APTES)/50 mol% tetraethoxysilane (TEOS) or 10 mol% APTES/90 mol% TEOS and 0.015 M selenoxide or telluride catalyst in the sol gave reduced settlement of cypris larvae of the barnacle Balanus amphitrite and larvae of the tubeworm Hydroides elegans in the presence of artificial seawater (ASW) and hydrogen peroxide (5-100 μM) relative to glass controls. Settlement of Ulva zoospores was lower on both the 50 mol% APTES/50 mol% TEOS and 10 mol% APTES/90 mol% TEOS xerogel formulations in comparison with glass controls with or without the added catalyst. The 50 mol% APTES/50 mol%TEOS xerogel containing telluride catalyst gave reduced settlement of Ulva zoospores in the presence of 100 μM H2O2 in ASW compared with the same coating without added peroxide. Scanning electron microscopy and XPS data suggest that exposure to H2O2 does not lead to chemical or morphological changes on the xerogel surface

    Temperature cues gametogenesis and larval release in a tropical sponge

    No full text
    Determining the reproductive processes of benthic invertebrates is central to our understanding of their recruitment and population dynamics. Sexual reproduction of the gonochoric and viviparous Great Barrier Reef sponge, Luffariella variabilis (Poléjaeff 1884) was quantified from histological samples collected over two reproductive seasons (2004 and 2005). Gametogenesis commenced for females at a water temperature of 21°C, the lowest water temperature of the year. Spermatogenesis occurred above 22.5°C with sperm asynchronously developed and released from August or September to October. Oocytes developed asynchronously from July to September, embryos from September to December, and larvae from November to December. Female reproduction terminated in December (after larval release) prior to the highest mean annual water temperature of 30°C in January. There was a significant (35%) decrease in female reproductive output in 2005 compared to 2004, as measured by the reproductive index (0.68 ± 0.12 female reproductive propagules mm−2 of mesohyl in 2005 compared with 1.05 ± 0.10 mm−2 in 2004). This corresponded with delayed oogenesis and spermatogenesis, and a shortened larval development cycle corresponding with a delayed minimum temperature (21°C) in August of 2005 compared with July 2004. Accordingly, the maximum percentage of the mesohyl occupied by female reproductive propagules (eggs, embryos and larvae) was also reduced by 60% in 2005 (overall mean of 13.04% in October 2004 compared with 5.35% in October 2005). However, the mean sizes of individual female propagules remained the same from year to year. Males in contrast, showed no overall difference in either reproductive index or percentage occupation of the mesohyl between 2004 and 2005. The lowered reproductive output (∼35%) of females of L. variabilis associated with delayed minimum water temperatures may have important implications for population reproductive success where oogenesis and spermatogenesis and larval release are cued by minimum and maximum water temperatures, respectively
    corecore