8 research outputs found

    Chemical Mixtures in Household Environments: In Silico Predictions and In Vitro Testing of Potential Joint Action on PPARγ in Human Liver Cells

    Get PDF
    There are thousands of chemicals that humans can be exposed to in their everyday environments, the majority of which are currently understudied and lack substantial testing for potential exposure and toxicity. This study aimed to implement in silico methods to characterize the chemicals that co-occur across chemical and product uses in our everyday household environments that also target a common molecular mediator, thus representing understudied mixtures that may exacerbate toxicity in humans. To detail, the Chemical and Products Database (CPDat) was queried to identify which chemicals co-occur across common exposure sources. Chemicals were preselected to include those that target an important mediator of cell health and toxicity, the peroxisome proliferator activated receptor gamma (PPARγ), in liver cells that were identified through query of the ToxCast/Tox21 database. These co-occurring chemicals were thus hypothesized to exert potential joint effects on PPARγ. To test this hypothesis, five commonly co-occurring chemicals (namely, benzyl cinnamate, butyl paraben, decanoic acid, eugenol, and sodium dodecyl sulfate) were tested individually and in combination for changes in the expression of PPARγ and its downstream target, insulin receptor (INSR), in human liver HepG2 cells. Results showed that these likely co-occurring chemicals in household environments increased both PPARγ and INSR expression more significantly when the exposures occurred as mixtures vs. as individual chemicals. Future studies will evaluate such chemical combinations across more doses, allowing for further quantification of the types of joint action while leveraging this method of chemical combination prioritization. This study demonstrates the utility of in silico-based methods to identify chemicals that co-occur in the environment for mixtures toxicity testing and highlights relationships between understudied chemicals and changes in PPARγ-associated signaling

    Development of the InTelligence And Machine LEarning (TAME) Toolkit for Introductory Data Science, Chemical-Biological Analyses, Predictive Modeling, and Database Mining for Environmental Health Research

    Get PDF
    Research in environmental health is becoming increasingly reliant upon data science and computational methods that can more efficiently extract information from complex datasets. Data science and computational methods can be leveraged to better identify relationships between exposures to stressors in the environment and human disease outcomes, representing critical information needed to protect and improve global public health. Still, there remains a critical gap surrounding the training of researchers on these in silico methods. We aimed to address this gap by developing the inTelligence And Machine lEarning (TAME) Toolkit, promoting trainee-driven data generation, management, and analysis methods to “TAME” data in environmental health studies. Training modules were developed to provide applications-driven examples of data organization and analysis methods that can be used to address environmental health questions. Target audiences for these modules include students, post-baccalaureate and post-doctorate trainees, and professionals that are interested in expanding their skillset to include recent advances in data analysis methods relevant to environmental health, toxicology, exposure science, epidemiology, and bioinformatics/cheminformatics. Modules were developed by study coauthors using annotated script and were organized into three chapters within a GitHub Bookdown site. The first chapter of modules focuses on introductory data science, which includes the following topics: setting up R/RStudio and coding in the R environment; data organization basics; finding and visualizing data trends; high-dimensional data visualizations; and Findability, Accessibility, Interoperability, and Reusability (FAIR) data management practices. The second chapter of modules incorporates chemical-biological analyses and predictive modeling, spanning the following methods: dose-response modeling; machine learning and predictive modeling; mixtures analyses; -omics analyses; toxicokinetic modeling; and read-across toxicity predictions. The last chapter of modules was organized to provide examples on environmental health database mining and integration, including chemical exposure, health outcome, and environmental justice indicators. Training modules and associated data are publicly available online (https://uncsrp.github.io/Data-Analysis-Training-Modules/). Together, this resource provides unique opportunities to obtain introductory-level training on current data analysis methods applicable to 21st century science and environmental health

    Wildfire Variable Toxicity: Identifying Biomass Smoke Exposure Groupings through Transcriptomic Similarity Scoring

    No full text
    The prevalence of wildfires continues to grow globally with exposures resulting in increased disease risk. Characterizing these health risks remains difficult due to the wide landscape of exposures that can result from different burn conditions and fuel types. This study tested the hypothesis that biomass smoke exposures from variable fuels and combustion conditions group together based on similar transcriptional response profiles, informing which wildfire-relevant exposures may be considered as a group for health risk evaluations. Mice (female CD-1) were exposed via oropharyngeal aspiration to equal mass biomass smoke condensates produced from flaming or smoldering burns of eucalyptus, peat, pine, pine needles, or red oak species. Lung transcriptomic signatures were used to calculate transcriptomic similarity scores across exposures, which informed exposure groupings. Exposures from flaming peat, flaming eucalyptus, and smoldering eucalyptus induced the greatest responses, with flaming peat grouping with the pro-inflammatory agent lipopolysaccharide. Smoldering red oak and smoldering peat induced the least transcriptomic response. Groupings paralleled pulmonary toxicity markers, though they were better substantiated by higher data dimensionality and resolution provided through -omic-based evaluation. Interestingly, groupings based on smoke chemistry signatures differed from transcriptomic/toxicity-based groupings. Wildfire-relevant exposure groupings yield insights into risk assessment strategies to ultimately protect public health

    Wildfire Variable Toxicity: Identifying Biomass Smoke Exposure Groupings through Transcriptomic Similarity Scoring

    No full text
    The prevalence of wildfires continues to grow globally with exposures resulting in increased disease risk. Characterizing these health risks remains difficult due to the wide landscape of exposures that can result from different burn conditions and fuel types. This study tested the hypothesis that biomass smoke exposures from variable fuels and combustion conditions group together based on similar transcriptional response profiles, informing which wildfire-relevant exposures may be considered as a group for health risk evaluations. Mice (female CD-1) were exposed via oropharyngeal aspiration to equal mass biomass smoke condensates produced from flaming or smoldering burns of eucalyptus, peat, pine, pine needles, or red oak species. Lung transcriptomic signatures were used to calculate transcriptomic similarity scores across exposures, which informed exposure groupings. Exposures from flaming peat, flaming eucalyptus, and smoldering eucalyptus induced the greatest responses, with flaming peat grouping with the pro-inflammatory agent lipopolysaccharide. Smoldering red oak and smoldering peat induced the least transcriptomic response. Groupings paralleled pulmonary toxicity markers, though they were better substantiated by higher data dimensionality and resolution provided through -omic-based evaluation. Interestingly, groupings based on smoke chemistry signatures differed from transcriptomic/toxicity-based groupings. Wildfire-relevant exposure groupings yield insights into risk assessment strategies to ultimately protect public health

    Wildfire Variable Toxicity: Identifying Biomass Smoke Exposure Groupings through Transcriptomic Similarity Scoring

    No full text
    The prevalence of wildfires continues to grow globally with exposures resulting in increased disease risk. Characterizing these health risks remains difficult due to the wide landscape of exposures that can result from different burn conditions and fuel types. This study tested the hypothesis that biomass smoke exposures from variable fuels and combustion conditions group together based on similar transcriptional response profiles, informing which wildfire-relevant exposures may be considered as a group for health risk evaluations. Mice (female CD-1) were exposed via oropharyngeal aspiration to equal mass biomass smoke condensates produced from flaming or smoldering burns of eucalyptus, peat, pine, pine needles, or red oak species. Lung transcriptomic signatures were used to calculate transcriptomic similarity scores across exposures, which informed exposure groupings. Exposures from flaming peat, flaming eucalyptus, and smoldering eucalyptus induced the greatest responses, with flaming peat grouping with the pro-inflammatory agent lipopolysaccharide. Smoldering red oak and smoldering peat induced the least transcriptomic response. Groupings paralleled pulmonary toxicity markers, though they were better substantiated by higher data dimensionality and resolution provided through -omic-based evaluation. Interestingly, groupings based on smoke chemistry signatures differed from transcriptomic/toxicity-based groupings. Wildfire-relevant exposure groupings yield insights into risk assessment strategies to ultimately protect public health

    Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes

    No full text
    BACKGROUND: The cardiovascular effects of adding once-weekly treatment with exenatide to usual care in patients with type 2 diabetes are unknown. METHODS: We randomly assigned patients with type 2 diabetes, with or without previous cardiovascular disease, to receive subcutaneous injections of extended-release exenatide at a dose of 2 mg or matching placebo once weekly. The primary composite outcome was the first occurrence of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. The coprimary hypotheses were that exenatide, administered once weekly, would be noninferior to placebo with respect to safety and superior to placebo with respect to efficacy. RESULTS: In all, 14,752 patients (of whom 10,782 [73.1%] had previous cardiovascular disease) were followed for a median of 3.2 years (interquartile range, 2.2 to 4.4). A primary composite outcome event occurred in 839 of 7356 patients (11.4%; 3.7 events per 100 person-years) in the exenatide group and in 905 of 7396 patients (12.2%; 4.0 events per 100 person-years) in the placebo group (hazard ratio, 0.91; 95% confidence interval [CI], 0.83 to 1.00), with the intention-to-treat analysis indicating that exenatide, administered once weekly, was noninferior to placebo with respect to safety (P<0.001 for noninferiority) but was not superior to placebo with respect to efficacy (P=0.06 for superiority). The rates of death from cardiovascular causes, fatal or nonfatal myocardial infarction, fatal or nonfatal stroke, hospitalization for heart failure, and hospitalization for acute coronary syndrome, and the incidence of acute pancreatitis, pancreatic cancer, medullary thyroid carcinoma, and serious adverse events did not differ significantly between the two groups. CONCLUSIONS: Among patients with type 2 diabetes with or without previous cardiovascular disease, the incidence of major adverse cardiovascular events did not differ significantly between patients who received exenatide and those who received placebo

    Analysis of Outcomes in Ischemic vs Nonischemic Cardiomyopathy in Patients With Atrial Fibrillation A Report From the GARFIELD-AF Registry

    No full text
    IMPORTANCE Congestive heart failure (CHF) is commonly associated with nonvalvular atrial fibrillation (AF), and their combination may affect treatment strategies and outcomes
    corecore