185 research outputs found
Recommended from our members
Calculation of clearances in twin screw compressors
Clearances between rotating and stationary parts in a screw compressor are set to ensure the efficient operation and allow for thermal deformation without unwanted contacts. The change in clearances is caused by both pressure and temperature changes within the machine. If clearances are too large, the increased leakage flows will reduce efficiency. However, if the nominal clearances are too small, contacts between the rotating and stationary parts can occur as a consequence of rotor and casing deformations. In order to determine the operational clearances, a numerical analysis of deformation of screw compressor rotors and casing has to be performed. This paper discusses how the temperature of rotor and casing surfaces calculated from the one-dimensional chamber model in the SCORG could be used as a boundary conditions for a steady state thermal and structural analysis of a screw compressor solid parts. Deformations of rotors and casing under temperature load were calculated using a commercial Finite Element Analysis code ANSYS. Operational clearance are estimated from these deformations and some recommendations for further work are proposed
Recommended from our members
Deforming grid generation and CFD analysis of variable geometry screw compressors
The most common type of twin screw machines are twin screw compressors. These normally contain rotors of uniform pitch and profile along the rotor length. However, in some cases such as in twin screw vacuum pumps with very large pressure ratios, the variable pitch rotors are often used to improve efficiency. The limited use of rotors with variable pitch and/or section profile is mainly due to manufacturing constraints. In order to analyse the performance of such machines by means of Computational Fluid Dynamics (CFD), it is necessary to produce a numerical mesh capable of calculating 3D transient fluid flows within their working domains.
An algebraic grid generation algorithm applicable to unstructured grid, Finite Volume Method (FVM) for variable pitch and variable profile screw machines is described in this paper. The grid generation technique has been evaluated for an oil free air compressor with “N” profile rotors of 3/5 lobe configuration. The performance was obtained by calculations with commercial CFD code. The grid generation procedure provides mesh of the required quality and results from CFD calculations are presented to compare performance of constant pitch rotors, variable pitch rotors and variable profile rotors. The variable pitch and variable profile rotors achieve steeper internal pressure rise and a larger discharge area for the same pressure ratio. Variable pitch rotors achieve reduced sealing line length in high pressure domains
Modelling and Experimental Investigation of Unsteady Behaviour of a Screw Compressor Plant
Majority of air compressor plants installed worldwide operate permanently under unsteady conditions, however, there is still a lack of published papers which describe the plant dynamics and offer quantification parameters of the phenomenon. An experimental and analytical study of a screw compressor operation under unsteady conditions has been carried out. For this purpose a one dimensional model of the processes within a screw compressor based on the differential equations of conservation of mass and energy was extended to include other plant components, taking into account tanks and connecting piping. The analytical model was then further developed to demonstrate the whole plant transient operation when a screw compressor is connected with other plant elements in a complete complex air compressor plant which consists of the positive displacement compressor, then the low pressure and high pressure tanks and communications between them and auxiliary equipment, like control valves, storage tanks and heat exchangers, like oil and air coolers. Results of such a model are verified with the experimental data and presented in diagrams which confirm good agreement between experiment and simulation. This model allows simulation of unsteady plant operation under various scenarios which may occur within engineering practice and calculates plant dynamics at any given time
Accounting for Local Thermal Distortions in a Chamber Model for Twin Screw Compressors
A procedure is presented to estimate local clearance distortions in a twin screw compressor using boundary conditions derived from a chamber model. Time varying boundary conditions from the non-dimensional model are mapped onto rotor and casing surface arrays. The fluid boundary temperatures are time-averaged then used to estimate the local rotor and casing temperatures. Heat transfer assumptions that represent the extreme case for component temperature distributions are presented. The relative local change in clearances between rotors and casing are then investigated analytically. The effect of the revised clearances on the performance is quantified and compared against experimental results
Recommended from our members
Normal Rack Grid Generation Method for Screw Machines with Large Helix Angles
Improving the efficiency of the screw machine is highly significant for industry. Numerical simulation is an important tool in developing these machines. The 3D computational fluid dynamic simulation can give a valuable insight into the flow parameters of screw machines. However, it is currently difficult to generate high quality computational grids required for screw rotors with large helix angle. This is mainly due to the excessively high cell skewness of the rotors with large helix angel, which would introduce errors in numerical simulation. This paper presents a novel grid generation algorithm used for the screw rotors with large helix angel. This method is based on the principles developed for the grid generation in transverse cross-section. Such mesh is generated by SCORGTM using normal rack grid generation method which means numerical meshes are generated in a plane normal to the pitch helix line. The mesh lines are then parallel to the helix line and thus an orthogonal mesh will be produced. The main flow and leakage flow directions are orthogonal to the mesh, potentially reducing numerical diffusion. This developed algorithm could also be employed for single screw machines
- …