5 research outputs found
Recommended from our members
Natural products reveal cancer cell dependence on oxysterol-binding proteins
Cephalostatin 1, OSW-1, ritterazine B and schweinfurthin A are natural products that potently, and in some cases selectively, inhibit the growth of cultured human cancer cell lines. The cellular targets of these small molecules have yet to be identified. We have discovered that these molecules target oxysterol binding protein (OSBP) and its closest paralog, OSBP-related protein 4L (ORP4L)—proteins not known to be involved in cancer cell survival. OSBP and the ORPs constitute an evolutionarily conserved protein superfamily, members of which have been implicated in signal transduction, lipid transport and lipid metabolism. The functions of OSBP and the ORPs, however, remain largely enigmatic. Based on our findings, we have named the aforementioned natural products ORPphilins. Here we used ORPphilins to reveal new cellular activities of OSBP. The ORPphilins are powerful probes of OSBP and ORP4L that will be useful in uncovering their cellular functions and their roles in human diseases.Chemistry and Chemical Biolog
Possible mechanism of superoxide formation through redox cycling of plumbagin in pig heart
The purpose of this study is to elucidate the possible mechanism of superoxide formation through redox cycling of plumbagin (PLG) in pig heart. Of four 1,4-naphthoquinonestested in this study, PLG was most efficiently reduced in the cytosolic fraction of pig heart. On the other hand, lawsone (LAS) was little reduced. Thus, whether or not PLG and LAS induce the formation of superoxide anion radical in pig heart cytosol was examined, by using the methods of cytochrome c reduction and chemiluminescence. PLG significantly induced the formation of superoxide anion radical, even though LAS had no ability to mediate superoxide formation. PLG was a significant inhibitor for the stereoselective reduction of 4-benzoylpyridine (4-P)catalyzed bytetrameric carbonyl reductase (TCBR) in pig heart cytosol. Furthermore, PLG was confirmed to competitively inhibit the 4-BP reduction, and the optimal pH for the PLG reduction was around 6.0 similar to that for the 4-BP reduction. These results suggest that PLG mediates superoxide formation through its redox cycling involved in the two-electron reduction catalyzed by TCBR, and induces oxidative stress in pig heart