23 research outputs found

    Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies

    Get PDF

    Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia

    Get PDF

    Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies

    Get PDF
    Background: Converging evidence suggests that immune-mediated dysfunction plays an important role in the pathogenesis of frontotemporal dementia (FTD). Although genetic studies have shown that immune-associated loci are associated with increased FTD risk, a systematic investigation of genetic overlap between immune-mediated diseases and the spectrum of FTD-related disorders has not been performed. Methods and findings: Using large genome-wide association studies (GWASs) (total n = 192,886 cases and controls) and recently developed tools to quantify genetic overlap/pleiotropy, we systematically identified single nucleotide polymorphisms (SNPs) jointly associated with FTD-related disorders\u2014namely, FTD, corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and amyotrophic lateral sclerosis (ALS)\u2014and 1 or more immune-mediated diseases including Crohn disease, ulcerative colitis (UC), rheumatoid arthritis (RA), type 1 diabetes (T1D), celiac disease (CeD), and psoriasis. We found up to 270-fold genetic enrichment between FTD and RA, up to 160-fold genetic enrichment between FTD and UC, up to 180-fold genetic enrichment between FTD and T1D, and up to 175-fold genetic enrichment between FTD and CeD. In contrast, for CBD and PSP, only 1 of the 6 immune-mediated diseases produced genetic enrichment comparable to that seen for FTD, with up to 150-fold genetic enrichment between CBD and CeD and up to 180-fold enrichment between PSP and RA. Further, we found minimal enrichment between ALS and the immune-mediated diseases tested, with the highest levels of enrichment between ALS and RA (up to 20-fold). For FTD, at a conjunction false discovery rate < 0.05 and after excluding SNPs in linkage disequilibrium, we found that 8 of the 15 identified loci mapped to the human leukocyte antigen (HLA) region on Chromosome (Chr) 6. We also found novel candidate FTD susceptibility loci within LRRK2 (leucine rich repeat kinase 2), TBKBP1 (TBK1 binding protein 1), and PGBD5 (piggyBac transposable element derived 5). Functionally, we found that the expression of FTD\u2013immune pleiotropic genes (particularly within the HLA region) is altered in postmortem brain tissue from patients with FTD and is enriched in microglia/macrophages compared to other central nervous system cell types. The main study limitation is that the results represent only clinically diagnosed individuals. Also, given the complex interconnectedness of the HLA region, we were not able to define the specific gene or genes on Chr 6 responsible for our pleiotropic signal. Conclusions: We show immune-mediated genetic enrichment specifically in FTD, particularly within the HLA region. Our genetic results suggest that for a subset of patients, immune dysfunction may contribute to FTD risk. These findings have potential implications for clinical trials targeting immune dysfunction in patients with FTD

    Etats de surface du sol et risques de ruissellement et d'Ă©rosion

    No full text
    Une approche méthodologique pour déterminer la sensibilité des terrains marneux au ravinement est développée. Les facteurs explicatifs sont relevés in-situ et les données sont numérisées à l'aide du système "DECAD" et traitées par les procédures de superposition et de classement du logiciel de SIG "IDRISI". Il en découle la production d'une carte de sensibilité des terrains marneux au ravinement. Le document permettrait de guider le repérage des zones d'interventions prioritaires pour la conservation des sols. (Résumé d'auteur

    Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes

    No full text
    Access to fixed or available forms of nitrogen limits the productivity of crop plants and thus food production. Nitrogenous fertilizer production currently represents a significant expense for the efficient growth of various crops in the developed world. There are significant potential gains to be had from reducing dependence on nitrogenous fertilizers in agriculture in the developed world and in developing countries, and there is significant interest in research on biological nitrogen fixation and prospects for increasing its importance in an agricultural setting. Biological nitrogen fixation is the conversion of atmospheric N2 to NH3, a form that can be used by plants. However, the process is restricted to bacteria and archaea and does not occur in eukaryotes. Symbiotic nitrogen fixation is part of a mutualistic relationship in which plants provide a niche and fixed carbon to bacteria in exchange for fixed nitrogen. This process is restricted mainly to legumes in agricultural systems, and there is considerable interest in exploring whether similar symbioses can be developed in nonlegumes, which produce the bulk of human food. We are at a juncture at which the fundamental understanding of biological nitrogen fixation has matured to a level that we can think about engineering symbiotic relationships using synthetic biology approaches. This minireview highlights the fundamental advances in our understanding of biological nitrogen fixation in the context of a blueprint for expanding symbiotic nitrogen fixation to a greater diversity of crop plants through synthetic biology

    Symbiotic Nitrogen fixation and challenges to extending it to non-legumes

    Get PDF
    Access to fixed or available forms of nitrogen limits the productivity of crop plants and thus food production. Nitrogenous fertilizer production currently represents a significant expense for the efficient growth of various crops in the developed world. There are significant potential gains to be had from reducing dependence on nitrogenous fertilizers in agriculture in the developed world and in developing countries, and significant interest in research on biological nitrogen fixation and prospects for increasing its importance in an agricultural setting. Biological nitrogen fixation is the conversion of atmospheric N2 to NH3—a form that can be used by plants. However, the process is restricted to bacteria and archaea and does not occur in eukaryotes. Symbiotic nitrogen fixation is part of a mutualistic relationship in which plants provide a niche and fixed carbon to bacteria in exchange for fixed nitrogen. This process is restricted mainly to legumes in agricultural systems and there is considerable interest in exploring whether similar symbioses can be developed in non-legumes, which produce the bulk of human food. We are at a juncture where the fundamental understanding of biological nitrogen fixation has matured to a level that we can think about engineering symbiotic relationships using synthetic biology approaches. This mini-review highlights the fundamental advances in our understanding of biological nitrogen fixation in the context of a blueprint for expanding symbiotic nitrogen fixation to a greater diversity of crop plants through synthetic biology.</p

    Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy.

    Get PDF
    Corticobasal degeneration (CBD) is a neurodegenerative disorder affecting movement and cognition, definitively diagnosed only at autopsy. Here, we conduct a genome-wide association study (GWAS) in CBD cases (n=152) and 3,311 controls, and 67 CBD cases and 439 controls in a replication stage. Associations with meta-analysis were 17q21 at MAPT (P=1.42 Ă— 10(-12)), 8p12 at lnc-KIF13B-1, a long non-coding RNA (rs643472; P=3.41 Ă— 10(-8)), and 2p22 at SOS1 (rs963731; P=1.76 Ă— 10(-7)). Testing for association of CBD with top progressive supranuclear palsy (PSP) GWAS single-nucleotide polymorphisms (SNPs) identified associations at MOBP (3p22; rs1768208; P=2.07 Ă— 10(-7)) and MAPT H1c (17q21; rs242557; P=7.91 Ă— 10(-6)). We previously reported SNP/transcript level associations with rs8070723/MAPT, rs242557/MAPT, and rs1768208/MOBP and herein identified association with rs963731/SOS1. We identify new CBD susceptibility loci and show that CBD and PSP share a genetic risk factor other than MAPT at 3p22 MOBP (myelin-associated oligodendrocyte basic protein)
    corecore