18 research outputs found

    Postseismic Deformation in the Northern Antarctic Peninsula Following the 2003 and 2013 Scotia Sea Earthquakes

    Get PDF
    Large earthquakes in the vicinity of Antarctica have the potential to cause postseismic viscoelastic deformation affecting measurements of displacement that are used to constrain models of glacial isostatic adjustment (GIA). In November 2013, a Mw 7.7 strike‐slip earthquake occurred in the Scotia Sea, 650 km from the Antarctic Peninsula. GPS time series from the northern Peninsula show a change in rate after this event, indicating a far‐field postseismic deformation signal is present. In this study, we use a finite element model with a suite of 1D and 3D Earth structures to investigate the extent of postseismic deformation in the Antarctic Peninsula. Model output is compared with GPS time series to place constraints on the Earth structure in this region. The preferred Earth structure has a thin lithosphere combined with a Burgers rheology with steady‐state viscosity of 4 × 1018 Pa s and transient viscosity one order of magnitude lower. Our study shows that including 3D Earth structure does not improve the fit. Using the best fitting Earth structure, we run a forward model of the nearby 2003 Mw 7.6 strike‐slip earthquake and combine the predictions for both earthquakes. We show that postseismic deformation is widespread across the northern Peninsula with rates of horizontal deformation up to 1.65 mm/yr for the period 2015–2020, a signal that persists for decades. These results suggest that much of Antarctica may be deforming due to recent postseismic deformation and this signal needs to be accounted for when using GPS observations to constrain geophysical models

    A directional model of tropospheric horizontal gradients in Global Positioning System and its application for particular weather scenarios

    Get PDF
    Improper modeling of horizontal tropospheric gradients in GPS analysis induces errors in estimated parameters, with the largest impact on heights and tropospheric zenith delays. The conventional two-axis tilted plane model of horizontal gradients fails to provide an accurate representation of tropospheric gradients under weather conditions with asymmetric horizontal changes of refractivity. A new parametrization of tropospheric gradients whereby an arbitrary number of gradients are estimated as discrete directional wedges is shown via simulations to significantly improve the accuracy of recovered tropospheric zenith delays in asymmetric gradient scenarios. In a case study of an extreme rain event that occurred in September 2002 in southern France, the new directional parametrization is able to isolate the strong gradients in particular azimuths around the GPS stations consistent with the "V" shape spatial pattern of the observed precipitation. In another study of a network of GPS stations in the Sierra Nevada region where highly asymmetric tropospheric gradients are known to exist, the new directional model significantly improves the repeatabilities of the stations in asymmetric gradient situations while causing slightly degraded repeatabilities for the stations in normal symmetric gradient conditions. The average improvement over the entire network is ∼31%, while the improvement for one of the worst affected sites P631 is ∼49% (from 8.5 mm to 4.3 mm) in terms of weighted root-mean-square (WRMS) error and ∼82% (from -1.1 to -0.2) in terms of skewness. At the same station, the use of the directional model changes the estimates of zenith wet delay by 15 mm (∼25%

    Crustal strain partitioning and the associated earthquake hazard in the eastern Sunda-Banda Arc

    Get PDF
    We use Global Positioning System (GPS) measurements of surface deformation to show that the convergence between the Australian Plate and Sunda Block in eastern Indonesia is partitioned between the megathrust and a continuous zone of back-arc thrusting extending 2000 km from east Java to north of Timor. Although deformation in this back-arc region has been reported previously, its extent and the mechanism of convergence partitioning have hitherto been conjectural. GPS observations establish that partitioning occurs via a combination of anticlockwise rotation of an arc segment called the Sumba Block, and left-lateral movement along a major NE-SW strike-slip fault west of Timor. We also identify a westward extension of the back-arc thrust for 300 km onshore into East Java, accommodating slip of ∼6 mm/yr. These results highlight a major new seismic threat for East Java and draw attention to the pronounced seismic and tsunami threat to Bali, Lombok, Nusa Tenggara, and other coasts along the Flores Sea

    Slow slip events and the 2016 Te Araroa Mw 7.1 earthquake interaction: Northern Hikurangi subduction, New Zealand

    Get PDF
    Following a sequence of three Slow Slip Events (SSEs) on the northern Hikurangi Margin, between June 2015 and August 2016, a Mw 7.1 earthquake struck ~30 km offshore of the East Cape region in the North Island of New Zealand on the 2 September 2016 (NZ local time). The earthquake was also followed by a transient deformation event (SSE or afterslip) northeast of the North Island, closer to the earthquake source area. We use data from New Zealand’s continuous Global Positioning System networks to invert for the SSE slip distribution and evolution on the Hikurangi subduction interface. Our slip inversion results show an increasing amplitude of the slow slip toward the Te Araroa earthquake foreshock and main shock area, suggesting a possible triggering of the Mw 7.1 earthquake by the later stage of the slow slip sequence. We also show that the transient deformation following the Te Araroa earthquake ruptured a portion of the Hikurangi Trench northeast of the North Island, farther north than any previously observed Hikurangi margin SSEs. Our slip inversion and the coulomb stress calculation suggest that this transient may have been induced as a response to the increase in the static coulomb stress change downdip of the rupture plane on the megathrust. These observations show the importance of considering the interaction between slow slip events, seismic, and aseismic events, not only on the same megathrust interface but also on faults within the surrounding crust

    Wedge geometry, frictional properties and interseismic coupling of the Java megathrust

    No full text
    The mechanical interaction between rocks at fault zones is a key element for understanding how earthquakes nucleate and propagate. Therefore, estimating frictional properties along fault planes allows us to infer the degree of elastic strain accumulation throughout the seismic cycle. The Java subduction zone is an active plate boundary where high seismic activity has long been documented. However, very little is known about the seismogenic processes of the megathrust, especially its shallowest portion where onshore geodetic networks are insensitive to recover the pattern of elastic strain. Here, we use the geometry of the offshore accretionary prism to infer frictional properties along the Java subduction zone, using Coulomb critical taper theory. We show that large portions of the inner wedge in the eastern part of the Java subduction megathrust are in a critical state, where the wedge is on the verge of failure everywhere. We identify four clusters with an internal coefficient of friction μint of ∼ 0.8 and hydrostatic pore pressure within the wedge. The average effective coefficient of friction ranges between 0.3 and 0.4, reflecting a strong décollement. Our results also show that the aftershock sequence of the 1994 Mw 7.9 earthquake halted adjacent to a critical segment of the wedge, suggesting that critical taper wedge areas in the eastern Java subduction interface may behave as a permanent barrier to large earthquake rupture. In contrast, in western Java topographic slope and slab dip profiles suggest that the wedge is mechanically stable, i.e deformation is restricted to sliding along the décollement, and likely to coincide with a seismogenic portion of the megathrust. We discuss the seismic hazard implications and highlight the importance of considering the segmentation of the Java subduction zone when assessing the seismic hazard of this region.This research was partially supported by the Australian Dept. Foreign Affairs Grant 71982

    Study of seasonal-scale atmospheric water cycle with ground-based GPS receivers, radiosondes and NWP models over Morocco

    No full text
    This study investigates the seasonal variation of precipitable water vapor, moisture transport and precipitation over Morocco and the Canary Islands using data from ground-based GPS receivers, radiosondes, GPCP and NCEP reanalysis II. In a first part, the datasets are inter-compared. Humidity biases are evidenced in both radiosonde observations (dry) and NCEP reanalysis (dry and wet) compared to GPS. Moisture transport and precipitation from the reanalysis and observations show a good agreement. Precipitable water shows a maximum in late summer whereas precipitation is peaking in winter and spring over Morocco. Moisture transport occurs preferentially in two layers, below and above 850 hPa. The monthly mean precipitable water variation over Morocco is controlled by the upper layer zonal and meridional moisture flux. Precipitation is rather controlled by the lower layer moisture flux and the upper layer meridional flux. The GPS tropospheric gradients show also a consistent seasonal evolution, which is explained by gradients both in the thickness of the troposphere and in the precipitable water vapor. Tropospheric gradients are correlated with moisture fluxes, mostly in the upper layer, and may therefore provide valuable information for meteorology and climatology

    Estimation of offsets in GPS time-series and application to the detection of earthquake deformation in the far-field.

    No full text
    Extracting geophysical signals from Global Positioning System (GPS) coordinate time-series is a well-established practice that has led to great insights into how the Earth deforms. Often small discontinuities are found in such time-series and are traceable to either broad-scale deformation (i.e. earthquakes) or discontinuities due to equipment changes and/or failures. Estimating these offsets accurately enables the identification of coseismic deformation estimates in the former case, and the removal of unwanted signals in the latter case which then allows tectonic rates to be estimated more accurately. We develop a method to estimate accurately discontinuities in time series of GPS positions at specified epochs, based on a so-called ‘offset series’. The offset series are obtained by varying the amount of GPS data before and after an event while estimating the offset. Two methods, a mean and a weighted mean method, are then investigated to produce the estimated discontinuity from the offset series. The mean method estimates coseismic offsets without making assumptions about geophysical processes that may be present in the data (i.e. tectonic rate, seasonal variations), whereas the weighted mean method includes estimating coseismic offsets with a model of these processes. We investigate which approach is the most appropriate given certain lengths of available data and noise within the time-series themselves. For the Sumatra–Andaman event, with 4.5 yr of pre-event data, we show that between 2 and 3 yr of post-event data are required to produce accurate offset estimates with the weighted mean method. With less data, the mean method should be used, but the uncertainties of the estimated discontinuity are larger

    Lineaments and earthquake ruptures on the East Japan megathrust

    Get PDF
    In this paper we describe the earthquake geology of East Japan, based on a seismotectonic analysis of foreshocks and aftershocks for the 2011 Tohoku-oki Great Earthquake. The earthquake geology is defined by three compressional buttresses that are separated by channels dominated by extensional earthquakes. In the 2011 earthquake sequence, most activity occurred in the Tohoku-oki extensional channel. This is bounded by seismotectonic lineaments that run subparallel to the slip direction of thrust-fault earthquakes in the adjacent compressional buttresses, and to the slip direction of landward-dipping normal-fault aftershocks in the subducting Pacific plate. The northern bounding seismotectonic lineament of the Tohoku-oki extensional channel runs WNW-ESE ∼15 km north of the Miyagi Volcanic Lineament. The southern bounding seismotectonic lineament runs ∼20 km to the south of the Fukushima Volcanic Lineament. These lineaments may reflect faults that splay from deeper structures beneath the volcanic lineaments. In any case, the seismotectonic lineaments appear to reflect zones of weakness, and as is the case in any load-bearing architecture, precursor movements on such focusing structures may herald the onset of catastrophic failure. We discovered that two-thirds of all major earthquakes with moment magnitude Mw ≥6.9 in the past 40 years in East Japan began within 15 km of the seaward prolongation of a volcanic lineament, and that motion across the northern seismotectonic lineament reversed its sense in the days prior to the 2011 Great Earthquake, suggesting the onset of yield. We infer that continuous geodetic monitoring across the East Japan lineaments might thus provide useful signals for future hazard assessment

    The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning

    No full text
    Our understanding of seismic risk in Java has been focused primarily on the subduction zone, where the seismic records during the last century have shown the occurrence of a number of tsunami earthquakes. However, the potential of the existence of active crustal structures within the island of Java itself is less well known. Historical archives show the occurrence of several devastating earthquake ruptures north of the volcanic arc in west Java during the 18th and the 19th centuries, suggesting the existence of active faults that need to be identified in order to guide seismic hazard assessment. Here we use geodetic constraints from the Global Positioning System (GPS) to quantify the present day crustal deformation in Java. The GPS velocities reveal a homogeneous counterclockwise rotation of the Java Block independent of Sunda Block, consistent with a NE–SW convergence between the Australian Plate and southeast Asia. Continuous GPS observations show a time-dependent change in the linear rate of surface motion in west Java, which we interpret as an ongoing long-term post-seismic deformation following the 2006 Mw 7.7 Java earthquake. We use an elastic block model in combination with a viscoelastic model to correct for this post-seismic transient and derive the long-term inter-seismic velocity, which we interpret as a combination of tectonic block motions and crustal faults strain related deformation. There is a north–south gradient in the resulting velocity field with a decrease in the magnitude towards the North across the Kendeng Thrust in the east and the Baribis Thrust in the west. We suggest that the Baribis Thrust is active and accommodating a slow relative motion between Java and the Sunda Block at about 5 ± 0.2 mm/yr. We propose a kinematic model of convergence of the Australian Plate and the Sunda Block, involving a slip partitioning between the Java Trench and a left-lateral structure extending E–W along Java with most of the convergence being accommodated by the Java megathrust, and a much smaller parallel motion accommodated along the Baribis (∼5 ± 0.2 mm/yr) and Kendeng (∼2.3 ± 0.7 mm/yr) Thrusts. Our study highlights a correlation between the geodetically inferred active faults and historical seismic catalogs, emphasizing the importance of considering crustal fault activity within Java in future seismic assessmentsThis research was supported under the Australian Research Council’s Linkage Projects funding scheme, grant LP110100525 and the Australian Dept. Foreign Affairs Grant 71982. A.K. was partly supported by the ARC Linkage grant LP130100134
    corecore