235 research outputs found
Increased susceptibility of 129SvEvBrd mice to IgE-Mast cell mediated anaphylaxis
<p>Abstract</p> <p>Background</p> <p>Experimental analyses have identified strain-dependent factors that regulate susceptibility to anaphylaxis in mice. We assessed the susceptibility of the widely used 129SvEvBrd (also known as 129S5) mouse strain to IgE/mast cell-mediated anaphylaxis as compared to BALB/c. Mice were subjected to passive and oral Ovalbumin [OVA]-induced active anaphylaxis. Tissue mast cell, plasma histamine, total IgE and OVA-specific IgE levels and susceptibility to histamine i.v infusion were assessed. Bone marrow mast cell (BMMC)s were examined for Fc<sub>Δ</sub>RI, c-kit, degranulation efficiency, proliferation, apoptosis and cytokine profile.</p> <p>Results</p> <p>129S5 mice had significantly increased susceptibility to passive and oral OVA-induced active anaphylaxis. Increased susceptibility to anaphylaxis was associated with increased homeostatic mast cell levels but not OVA-specific IgE or IgG<sub>1 </sub>levels. <it>In vitro </it>analyses of BMMCs revealed no difference in Fc<sub>Δ</sub>RI and c-Kit expression, however, 129S5 BMMCs possessed greater proliferative capacity and reduced caspase-3-mediated apoptosis. IgE-BMMC degranulation assays demonstrated no difference in degranulation efficiency. Furthermore, 129S5 mice possessed increased sensitivity to histamine-induced hypothermia.</p> <p>Conclusions</p> <p>We conclude that 129S5 mice have increased susceptibility to anaphylaxis as compared to BALB/c strain and their increased susceptibility was associated with altered mast cell proliferation and homeostatic tissue levels and responsiveness to histamine. Given the wide spread usage of the 129SvEvBrd strain of mice in experimental gene targeting methodology, these data have important implications for studying IgE-reactions in mouse systems.</p
On Family-Based Genome-Wide Association Studies with Large Pedigrees: Observations and Recommendations
Family based association studies are employed less often than case-control designs in the search for disease-predisposing genes. The optimal statistical genetic approach for complex pedigrees is unclear when evaluating both common and rare variants. We examined the empirical power and type I error rates of 2 common approaches, the measured genotype approach and family-based association testing, through simulations from a set of multigenerational pedigrees. Overall, these results suggest that much larger sample sizes will be required for family-based studies and that power was better using MGA compared to FBAT. Taking into account computational time and potential bias, a 2-step strategy is recommended with FBAT followed by MGA
Modeling of Multivariate Longitudinal Phenotypes in Family Genetic Studies with Bayesian Multiplicity Adjustment
Genetic studies often collect data on multiple traits. Most genetic association analyses, however, consider traits separately and ignore potential correlation among traits, partially because of difficulties in statistical modeling of multivariate outcomes. When multiple traits are measured in a pedigree longitudinally, additional challenges arise because in addition to correlation between traits, a trait is often correlated with its own measures over time and with measurements of other family members. We developed a Bayesian model for analysis of bivariate quantitative traits measured longitudinally in family genetic studies. For a given trait, family-specific and subject-specific random effects account for correlation among family members and repeated measures, respectively. Correlation between traits is introduced by incorporating multivariate random effects and allowing time-specific trait residuals to correlate as in seemingly unrelated regressions. The proposed model can examine multiple single-nucleotide variations simultaneously, as well as incorporate familyspecific, subject-specific, or time-varying covariates. Bayesian multiplicity technique is used to effectively control false positives. Genetic Analysis Workshop 18 simulated data illustrate the proposed approach\u27s applicability in modeling longitudinal multivariate outcomes in family genetic association studies
Recommended from our members
Phenome-wide association study (PheWAS) in EMR-linked pediatric cohorts, genetically links PLCL1 to speech language development and IL5-IL13 to Eosinophilic Esophagitis
Objective: We report the first pediatric specific Phenome-Wide Association Study (PheWAS) using electronic medical records (EMRs). Given the early success of PheWAS in adult populations, we investigated the feasibility of this approach in pediatric cohorts in which associations between a previously known genetic variant and a wide range of clinical or physiological traits were evaluated. Although computationally intensive, this approach has potential to reveal disease mechanistic relationships between a variant and a network of phenotypes. Method: Data on 5049 samples of European ancestry were obtained from the EMRs of two large academic centers in five different genotyped cohorts. Recently, these samples have undergone whole genome imputation. After standard quality controls, removing missing data and outliers based on principal components analyses (PCA), 4268 samples were used for the PheWAS study. We scanned for associations between 2476 single-nucleotide polymorphisms (SNP) with available genotyping data from previously published GWAS studies and 539 EMR-derived phenotypes. The false discovery rate was calculated and, for any new PheWAS findings, a permutation approach (with up to 1,000,000 trials) was implemented. Results: This PheWAS found a variety of common variants (MAF > 10%) with prior GWAS associations in our pediatric cohorts including Juvenile Rheumatoid Arthritis (JRA), Asthma, Autism and Pervasive Developmental Disorder (PDD) and Type 1 Diabetes with a false discovery rate < 0.05 and power of study above 80%. In addition, several new PheWAS findings were identified including a cluster of association near the NDFIP1 gene for mental retardation (best SNP rs10057309, p = 4.33 Ă 10â7, OR = 1.70, 95%CI = 1.38 â 2.09); association near PLCL1 gene for developmental delays and speech disorder [best SNP rs1595825, p = 1.13 Ă 10â8, OR = 0.65(0.57 â 0.76)]; a cluster of associations in the IL5-IL13 region with Eosinophilic Esophagitis (EoE) [best at rs12653750, p = 3.03 Ă 10â9, OR = 1.73 95%CI = (1.44 â 2.07)], previously implicated in asthma, allergy, and eosinophilia; and association of variants in GCKR and JAZF1 with allergic rhinitis in our pediatric cohorts [best SNP rs780093, p = 2.18 Ă 10â5, OR = 1.39, 95%CI = (1.19 â 1.61)], previously demonstrated in metabolic disease and diabetes in adults. Conclusion: The PheWAS approach with re-mapping ICD-9 structured codes for our European-origin pediatric cohorts, as with the previous adult studies, finds many previously reported associations as well as presents the discovery of associations with potentially important clinical implications
Epigenetic and Transcriptional Dysregulation in T cells of Patients with Atopic Dermatitis
Rationale: Atopic dermatitis (AD) is linked to genetic and environmental risk factors. The effect of these factors on molecular and transcriptional events is not well understood. Immunologically, AD involves skin barrier defects and CD4+ T cells that produce inflammatory cytokines and amplify epidermal dysfunction Our objective was to investigate epigenetic mechanisms that may account for genetic susceptibility in CD4+ T cells.
Methods: We measured chromatin accessibility (ATAC-seq), NFKB1 binding (ChIP-seq), and gene expression (RNA-seq) in anti-CD3/CD28 stimulated CD4+ T cells from 6 subjects with active moderate-to-severe AD and 6 age-matched non-allergic controls.
Results: AD genetic risk loci were enriched for open chromatin regions in stimulated CD4+ T cells. The majority of ATAC-seq peaks were shared between matched AD-control pairs, consistent with those sections of chromatin being equally available. In contrast, NFKB DNA binding motifs were enriched in AD-dependent open chromatin. NFKB1 ChIP-seq identified genomic regions that were more strongly bound in AD cases, more strongly bound in controls, or shared between cases and controls. Chromatin that was strongly accessible and bound by NFKB1 in AD was enriched for AD genetic risk variants. Using whole genome sequencing data, we identified genotype-dependent accessible chromatin at AD risk loci corresponding to 32 genes with genotype-dependent expression in stimulated CD4+ T cells.
Conclusions: The response of CD4+ T cells to stimulation is AD-specific and results in differential chromatin accessibility and transcription factor binding. These differences in transcriptional regulation result in epigenetic and transcriptional dysregulation in CD4+ T cells of patients with AD
Epigenetic and transcriptional dysregulation in CD4+ T cells in patients with atopic dermatitis
Atopic dermatitis (AD) is one of the most common skin disorders among children. Disease etiology involves genetic and environmental factors, with 29 independent AD risk loci enriched for risk allele-dependent gene expression in the skin and CD4+ T cell compartments. We investigated the potential epigenetic mechanisms responsible for the genetic susceptibility of CD4+ T cells. To understand the differences in gene regulatory activity in peripheral blood T cells in AD, we measured chromatin accessibility (an assay based on transposase-accessible chromatin sequencing, ATAC-seq), nuclear factor kappa B subunit 1 (NFKB1) binding (chromatin immunoprecipitation with sequencing, ChIP-seq), and gene expression levels (RNA-seq) in stimulated CD4+ T cells from subjects with active moderate-to-severe AD, as well as in age-matched non-allergic controls. Open chromatin regions in stimulated CD4+ T cells were highly enriched for AD genetic risk variants, with almost half of the AD risk loci overlapping AD-dependent ATAC-seq peaks. AD-specific open chromatin regions were strongly enriched for NF-ÎșB DNA-binding motifs. ChIP-seq identified hundreds of NFKB1-occupied genomic loci that were AD- or control-specific. As expected, the AD-specific ChIP-seq peaks were strongly enriched for NF-ÎșB DNA-binding motifs. Surprisingly, control-specific NFKB1 ChIP-seq peaks were not enriched for NFKB1 motifs, but instead contained motifs for other classes of human transcription factors, suggesting a mechanism involving altered indirect NFKB1 binding. Using DNA sequencing data, we identified 63 instances of altered genotype-dependent chromatin accessibility at 36 AD risk variant loci (30% of AD risk loci) that might lead to genotype-dependent gene expression. Based on these findings, we propose that CD4+ T cells respond to stimulation in an AD-specific manner, resulting in disease- and genotype-dependent chromatin accessibility alterations involving NFKB1 binding
Impact of Population Stratification on Family-Based Association in an Admixed Population
Population substructure is a well-known confounder in population-based case-control genetic studies, but its impact in familybased studies is unclear. We performed population substructure analysis using extended families of admixed population to evaluate power and Type I error in an association study framework. Our analysis shows that power was improved by 1.5% after principal components adjustment. Type I error was also reduced by 2.2% after adjusting for family substratification. The presence of population substructure was underscored by discriminant analysis, in which over 92% of individuals were correctly assigned to their actual family using only 100 principal components. This study demonstrates the importance of adjusting for population substructure in family-based studies of admixed populations
- âŠ