88 research outputs found
Exploring Oxysterols and Protein Carbonylation in Cervicovaginal Secretions as Biomarkers for Cervical Cancer Development
Cervical cancer, a major global health issue and the fourth most common cancer among women, is strongly linked to Human Papillomavirus (HPV) infection. Emerging evidence indicates that oxidative stress plays a critical role in the carcinogenesis of cervical tissue. This study investigates the relationship between oxidative stress markers—specifically oxysterols, lipid oxidation, and protein carbonylation—and the progression of cervical neoplasia. Oxysterols, which are elevated in various inflammatory diseases and cancers, were measured in cervicovaginal fluid samples using LC-MS/MS. The targeted oxysterols included 27-hydroxycholesterol (27-OHC), 7β-hydroxycholesterol (7β-OHC), 7-ketocholesterol (7-KC), and 7α,27-dihydroxycholesterol (7α,27-diOHC). Among these, 7α,27-dihydroxycholesterol was significantly increased in correlation with the severity of neoplastic stages. In parallel, protein carbonylation, an indicator of cellular oxidative stress, was assessed. Results revealed higher levels of protein carbonylation in neoplastic samples compared to non-neoplastic controls. These modifications were further analysed through redox proteomics to identify the specific proteins affected. The study demonstrates that elevated lipid oxidation and protein carbonylation in cervicovaginal secretions are linked to the development and progression of cervical cancer. Identifying these biomarkers may improve screening strategies, enabling the identification of individuals at increased risk for cervical neoplasia and guiding timely interventions
Measuring financial market integration over the long run: Is there a U-shape?
Using long time series for sovereign bond markets of fifteen industrialized economies from 1875 to 2009, I find that financial market integration by the end of the 20th century was higher than in earlier periods and exhibited a J -shaped trend with a trough in the 1920s. The main reason for the higher financial integration seen today is the recent extensive globalization. Around the turn of the 20th century, countries frequently drifted apart. Conversely, in recent years, the bond markets of most countries have moved together. Both policy variables and the global market environment play a role in explaining the time variation in integration, while “unexplained” changes in the overall level of country risk are also empirically important. My methodology, based on principal components analysis, is immune to outliers and accounts for global and country-specific shocks and, hence, can capture trends in financial integration more accurately than standard techniques such as simple correlations
- …