22 research outputs found

    BPM Button Optimization to Minimize Distortion Due to Trapped Mode Heating

    Get PDF
    Abstract The outer circumference of a BPM button and the inner circumference of the button housing comprise a transmission line. This transmission line typically presents an impedance of a few tens of ohms to the beam, and couples very weakly to the 50 ohm coaxial transmission line that comprises the signal path out of the button. The modes which are consequently excited and trapped often have quality factors of several hundred, permitting resonant excitation by the beam. The thermal distortion resulting from trapped mode heating is potentially problematic for achieving the high precision beam position measurements needed to provide the submicron beam position stability required by light source users. We present a button design that has been optimized via material selection and component geometry to minimize both the trapped mode heating and the resulting thermal distortion

    Tumor Cell-Driven Extracellular Matrix Remodeling Drives Haptotaxis during Metastatic Progression

    Get PDF
    Fibronectin (FN) is a major component of the tumor microenvironment, but its role in promoting metastasis is incompletely understood. Here we show that FN gradients elicit directional movement of breast cancer cells, in vitro and in vivo. Haptotaxis on FN gradients requires direct interaction between α5β1 integrin and Mena, an actin regulator, and involves increases in focal complex signaling and tumor-cell-mediated extracellular matrix (ECM) remodeling. Compared to Mena, higher levels of the pro-metastatic MenaINV isoform associate with α5, which enables 3D haptotaxis of tumor cells towards the high FN concentrations typically present in perivascular space and in the periphery of breast tumor tissue. MenaINV and FN levels were correlated in two breast cancer cohorts, and high levels of MenaINV were significantly associated with increased tumor recurrence as well as decreased patient survival. Our results identify a novel tumor-cell-intrinsic mechanism that promotes metastasis through ECM remodeling and ECM guided directional migration

    Prenatal Cocaine Exposure Increases Synaptic Localization of a Neuronal RasGEF, GRASP-1 via Hyperphosphorylation of AMPAR Anchoring Protein, GRIP

    Get PDF
    Prenatal cocaine exposure causes sustained phosphorylation of the synaptic anchoring protein, glutamate receptor interacting protein (GRIP1/2), preventing synaptic targeting of the GluR2/3-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs; J. Neurosci. 29: 6308–6319, 2009). Because overexpression of GRIP-associated neuronal rasGEF protein (GRASP-1) specifically reduces the synaptic targeting of AMPARs, we hypothesized that prenatal cocaine exposure enhances GRASP-1 synaptic membrane localization leading to hyper-activation of ras family proteins and heightened actin polymerization. Our results show a markedly increased GRIP1-associated GRASP-1 content with approximately 40% reduction in its rasGEF activity in frontal cortices (FCX) of 21-day-old (P21) prenatal cocaine-exposed rats. This cocaine effect is the result of a persistent protein kinase C (PKC)- and downstream Src tyrosine kinase-mediated GRIP phosphorylation. The hyperactivated PKC also increased membrane-associated GRASP-1 and activated small G-proteins RhoA, cdc42/Rac1 and Rap1 as well as filamentous actin (F-actin) levels without an effect on the phosphorylation state of actin. Since increased F-actin facilitates protein transport, our results suggest that increased GRASP-1 synaptic localization in prenatal cocaine-exposed brains is an adaptive response to restoring the synaptic expression of AMPA-GluR2/3. Our earlier data demonstrated that persistent PKC-mediated GRIP phosphorylation reduces GluR2/3 synaptic targeting in prenatal cocaine-exposed brains, we now show that the increased GRIP-associated GRASP-1 may contribute to the reduction in GluR2/3 synaptic expression and AMPAR signaling defects
    corecore