327 research outputs found
A Generic Model for Current Collapse in Spin Blockaded Transport
A decrease in current with increasing voltage, often referred to as negative
differential resistance (NDR), has been observed in many electronic devices and
can usually be understood within a one-electron picture. However, NDR has
recently been reported in nanoscale devices with large single-electron charging
energies which require a many-electron picture in Fock space. This paper
presents a generic model in this transport regime leading to a simple criterion
for the conditions required to observe NDR and shows that this model describes
the recent observation of multiple NDR's in Spin Blockaded transport through
weakly coupled-double quantum dots quite well. This model shows clearly how a
delicate interplay of orbital energy offset, delocalization and Coulomb
interaction lead to the observed NDR under the right conditions, and also aids
in obtaining a good match with experimentally observed features. We believe the
basic model could be useful in understanding other experiments in this
transport regime as well.Comment: 10 pages, 10 figures. to appear in Phys Rev
Spin-echo of a single electron spin in a quantum dot
We report a measurement of the spin-echo decay of a single electron spin
confined in a semiconductor quantum dot. When we tip the spin in the transverse
plane via a magnetic field burst, it dephases in 37 ns due to the Larmor
precession around a random effective field from the nuclear spins in the host
material. We reverse this dephasing to a large extent via a spin-echo pulse,
and find a spin-echo decay time of about 0.5 microseconds at 70 mT. These
results are in the range of theoretical predictions of the electron spin
coherence time governed by the dynamics of the electron-nuclear system.Comment: 5 pages, 4 figure
Nuclear Spin Dynamics in Double Quantum Dots: Fixed Points, Transients, and Intermittency
Transport through spin-blockaded quantum dots provides a means for electrical
control and detection of nuclear spin dynamics in the host material. Although
such experiments have become increasingly popular in recent years,
interpretation of their results in terms of the underlying nuclear spin
dynamics remains challenging. Here we point out a fundamental process in which
nuclear spin dynamics can be driven by electron shot noise; fast electric
current fluctuations generate much slower nuclear polarization dynamics, which
in turn affect electron dynamics via the Overhauser field. The resulting
extremely slow intermittent current fluctuations account for a variety of
observed phenomena that were not previously understood.Comment: version accepted for publication in Physical Review B, figure
repaire
Universal phase shift and non-exponential decay of driven single-spin oscillations
We study, both theoretically and experimentally, driven Rabi oscillations of
a single electron spin coupled to a nuclear spin bath. Due to the long
correlation time of the bath, two unusual features are observed in the
oscillations. The decay follows a power law, and the oscillations are shifted
in phase by a universal value of ~pi/4. These properties are well understood
from a theoretical expression that we derive here in the static limit for the
nuclear bath. This improved understanding of the coupled electron-nuclear
system is important for future experiments using the electron spin as a qubit.Comment: Main text: 4 pages, 3 figures, Supplementary material: 2 pages, 3
figure
Detection of single electron spin resonance in a double quantum dot
Spin-dependent transport measurements through a double quantum dot are a
valuable tool for detecting both the coherent evolution of the spin state of a
single electron as well as the hybridization of two-electron spin states. In
this paper, we discuss a model that describes the transport cycle in this
regime, including the effects of an oscillating magnetic field (causing
electron spin resonance) and the effective nuclear fields on the spin states in
the two dots. We numerically calculate the current flow due to the induced spin
flips via electron spin resonance and we study the detector efficiency for a
range of parameters. The experimental data are compared with the model and we
find a reasonable agreement.Comment: 7 pages, 5 figures. To be published in Journal of Applied Physics,
proceedings ICPS 200
Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates
We present a method for reading out the spin state of electrons in a quantum
dot that is robust against charge noise and can be used even when the electron
temperature exceeds the energy splitting between the states. The spin states
are first correlated to different charge states using a spin dependence of the
tunnel rates. A subsequent fast measurement of the charge on the dot then
reveals the original spin state. We experimentally demonstrate the method by
performing read-out of the two-electron spin states, achieving a single-shot
visibility of more than 80%. We find very long triplet-to-singlet relaxation
times (up to several milliseconds), with a strong dependence on in-plane
magnetic field.Comment: 4 pages, 4 figure
Control and Detection of Singlet-Triplet Mixing in a Random Nuclear Field
We observe mixing between two-electron singlet and triplet states in a double
quantum dot, caused by interactions with nuclear spins in the host
semiconductor. This mixing is suppressed by applying a small magnetic field, or
by increasing the interdot tunnel coupling and thereby the singlet-triplet
splitting. Electron transport involving transitions between triplets and
singlets in turn polarizes the nuclei, resulting in striking bistabilities. We
extract from the fluctuating nuclear field a limitation on the time-averaged
spin coherence time T2* of 25 ns. Control of the electron-nuclear interaction
will therefore be crucial for the coherent manipulation of individual electron
spins.Comment: 4 pages main text, 4 figure
Spin filling of a quantum dot derived from excited-state spectroscopy
We study the spin filling of a semiconductor quantum dot using excited-state
spectroscopy in a strong magnetic field. The field is oriented in the plane of
the two-dimensional electron gas in which the dot is electrostatically defined.
By combining the observation of Zeeman splitting with our knowledge of the
absolute number of electrons, we are able to determine the ground state spin
configuration for one to five electrons occupying the dot. For four electrons,
we find a ground state spin configuration with total spin S=1, in agreement
with Hund's first rule. The electron g-factor is observed to be independent of
magnetic field and electron number.Comment: 11 pages, 7 figures, submitted to New Journal of Physics, focus issue
on Solid State Quantum Informatio
- …