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Generic model for current collapse in spin-blockaded transport

Bhaskaran Muralidharan and Supriyo Datta
School of Electrical and Computer Engineering and Network for Computational Nanotechnology, Purdue University,

West Lafayette, Indiana 47907, USA
�Received 9 February 2007; revised manuscript received 17 April 2007; published 26 July 2007�

A decrease in current with increasing voltage, often referred to as negative differential resistance �NDR�, has
been observed in many electronic devices and can usually be understood within a one-electron picture. How-
ever, NDR has recently been reported in nanoscale devices with large single-electron charging energies which
require a many-electron picture in Fock space. This paper presents a generic model in this transport regime
leading to a simple criterion for the conditions required to observe NDR and shows that this model describes
the recent observation of multiple NDR’s in spin-blockaded transport through weakly coupled-double quantum
dots quite well. This model clearly shows how a delicate interplay of orbital energy offset, delocalization, and
Coulomb interaction leads to the observed NDR under the right conditions, and also aids in obtaining a good
match with experimentally observed features. We believe that the basic model could be useful in understanding
other experiments in this transport regime as well.

DOI: 10.1103/PhysRevB.76.035432 PACS number�s�: 73.63.Kv

I. INTRODUCTION

The recent observation of current suppression due to
“Pauli spin blockade” in weakly coupled-double quantum
dots �DQDs� represents an important step toward the realiza-
tion and manipulation of qubits.1–5 It is believed that the
Pauli spin blockade arises from the occupation of a triplet
state1 that is filled, but is not emptied easily. Our model
supports this picture and puts it in the context of what we
believe is a much more generic model involving a
“blocking”6 or “dark” state.7

A decrease in current with increasing voltage, often re-
ferred to as negative differential resistance �NDR�, has been
observed in many electronic devices such as degenerately
doped bulk semiconductors,8 quantum wells,9 and even
nanostructures,10 all of which can usually be understood
within a one-electron picture. However, a number of recent
experiments1,2,11–13 have reported NDR in nanoscale devices
with large single-electron charging energies which may re-
quire a many-electron picture in Fock space. Although spe-
cific models such as coupling to vibronic states,6 spin selec-
tion rules,14,15 asymmetric contact couplings,6 internal charge
transfers,12 and possibly conformational changes have been
put forth to explain some of these observations, we are not
aware of any generic models comparable in clarity and gen-
erality to those available for the occurrence of NDR in the
one-electron regime.

The objective of this paper is to present such a model for
the strongly correlated transport regime, within the sequen-
tial tunneling approximation,15,16 where current collapse and
NDR arise from the system being locked into a “blocking”
many-electron state that can only be filled from one contact
but cannot be emptied by the other. Once it is occupied, this
state blocks any further current flow. This concept �also in-
voked in a past work7� can be used to understand a general
category of experiments that involves NDRs. The basic idea
behind current collapse is a condition under which an excited
state of a Coulomb-blockaded channel normally inaccessible
at equilibrium can, under transport conditions, be occupied.
A drop in the current at a higher bias occurs if this excited
state is a blocking state characterized by a slow exit rate. In

the first part of this paper, we hence obtain a simple criterion
for NDR in terms of the rates of filling and emptying of
states.

In the later part of this paper, we then apply our model to
a specific example in detail, namely, the NDR observed in
weakly coupled DQDs.1,2 Our analysis directly addresses
current collapse in terms of current magnitudes, without in-
voking nonequilibrium population analysis.17,18 Thus, current
magnitudes at various bias voltages can be solely expressed
in terms of the DQD electronic structure parameters and
electrode coupling strengths. It then becomes very transpar-
ent as to how the interdot orbital offset, hopping, on-site, and
long-range correlations dramatically affect the observed
NDRs and leakage currents. In fact, all the nontrivial features
in spin blockade I-V’s �Ref. 1� such as multiple NDRs, bias
asymmetry in current, gateable current collapse,2 and finite
leakage currents can all be explained using the basic ideas
developed here. We believe that our criterion obtained from a
simple model could be useful for a wide class of experiments
beyond the DQD structure discussed in this paper.

II. CURRENT COLLAPSE MECHANISM

Consider a generic Coulomb-blockaded system shown
schematically in Fig. 1�a� that is coupled weakly to contacts
defined by chemical potentials �L and �R, respectively. Such
a Coulomb-blockaded system is strongly interacting and is
described by its states in Fock space. A general condition for
NDR to occur can be cast in terms of three Fock-space states
�A�, �B�, and �C� with energies EA�EB�EC, respectively,
shown in Fig. 1�b�, that represent three accessible states
within the bias range of interest. Typically, �A�, �B� could be
the ground states of the N−1 and N electron systems, while
�C� the first excited state of the N electron system. This de-
scription is equally valid for similar transitions between N
and N+1 electron states. Transport of electrons involves
single charge removal or addition between states �B�, �C�,
and �A� that differ by an electron, via addition and removal
transition rates RA↔B,C. Such an electron exchange is initi-
ated when reservoir levels are in resonance with single-
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electron transport channels �1=EB−EA and �2=EC−EA, re-
spectively. The I-V characteristics shown schematically in
Fig. 1�c�, of this three state system, show two plateaus with
current magnitudes Ip1 and Ip2, respectively. Current collapse
or NDR occurs when Ip1� Ip2. Let us now derive a condition
for NDR to occur in the positive bias I-V characteristics, of
this three state system.

These plateau currents can be evaluated in terms of bias
dependent probabilities of the three states �A�, �B�, and �C�,
given by a set of coupled master equations:16,21–24

dPA

dt
= − �RA→B + RA→C�PA + RB→APB + RC→APC,

dPB

dt
= − RB→APB + RA→BPA,

dPC

dt
= − RC→APC + RA→CPA, �1�

where RI→J denotes the transition rate between state �I� and
�J�, which could be an addition or a removal transition be-
tween these states that differ by a single electron. These rates
are most generally described as

RA→B = �
�=L,R

��MAB
� f���1� ,

RA→C = �
�=L,R

��MAC
� f���2� , �2�

where �L,R denotes the coupling strength to either contacts,
M’s denote coherence factors, and fL,R�E�= f�E−�L,R� de-
note Fermi-Dirac distributions in the leads. The coupling
strengths are often expressed in terms of the tunneling
Hamiltonian matrix elements �k�,m, where k� represents the
kth eigenmode in �=L ,R either contact,25 and m denotes a
quantum dot state as ��=2��k��k�,m�2 	�E−�k��. Note that
for the downward transitions, the f’s are replaced by 1− f’s.
The coherence factors depend significantly on the structure
of the many-body states involved in the transition and will be
considered while dealing with specific examples in the fol-
lowing sections. We also note that RB→C=RC→B=0, since
transitions between states with equal electron numbers are
forbidden, in the absence of coupling to radiation fields,6 or
higher order tunneling.16 The steady-state current I equals
both the left and right terminal currents �IL , IR� given by

IL =
q2



�RA→B

L PA − RB→A
L PB + RA→C

L PA − RC→A
L PC� ,

IR = −
q2



�RA→B

R PA − RB→A
R PB + �RA→C

R PA − RC→A
R PC�� ,

�3�

where q is the electronic charge and RI↔J
L,R stands for the left

or right contact contribution to the transition �I�↔ �J�. Posi-
tive bias plateau currents, shown schematically in Fig. 1�c�,
�see the Appendix�, are given by

Ip1 =
q2




�AB
L �BA

R

�AB
L + �BA

R ,

Ip2 =
q2




�AB
L + �AC

L

1 +
�AB

L

�BA
R +

�AC
L

�CA
R

, �4�

where

�IJ
� = ��MIJ

� . �5�

When Ip2� Ip1, current drops once the transition �A�↔ �C� is
accessed. Using the above expressions for Ip1 and Ip2, this
leads to a simple condition

1

�CA
R �

1

�AB
L +

1

�BA
R ��L � �R� , �6�

for current collapse or NDR in the I-V characteristics to oc-
cur along the positive bias. A similar condition for negative
bias NDR is obtained by replacing L with R and vice versa:

1

�CA
L �

1

�AB
R +

1

�BA
L ��R � �L� . �7�

The positive bias leakage current is now dictated by �CA
R ,

which corresponds to the rate of leakage from the blocking
channel �C�. For Ip1� Ip2, currents rise just like a regular
Coulomb-blockade staircase due to access of a second trans-

FIG. 1. �Color online� �a� A generic mechanism for current col-
lapse, rectification, and leakage currents through a Coulomb-
blockaded system can be cast in terms of �b� three device Fock-
space states and transitions �A�↔ �B� and �A�↔ �C� between those
that differ by a single electron. �c� Typical I-V characteristics of this
system comprise of two break points following a sequential access
of two transport channels �1 and �2. Insets depict the bias configu-
rations that correspond to various plateau currents. The central re-
sult of the paper, i.e., the condition for current collapse to occur
�Ip1� Ip2�, under positive or negative bias conditions, derived in
Eqs. �6� and �7�, is dictated by the rate of depopulating the “block-
ing” state �C�. Such transitions are represented via dotted arrows in
�b�.
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port channel. Asymmetry of this blockade leads to current
rectification observed in experiments1 is dictated by the ratio

� =
Ip2�VD � 0�
Ip2�VD � 0�

� 1. �8�

Thus, current collapse can occur along both bias directions,
provided Eqs. �6� and �7� are simultaneously satisfied. Fi-
nally, asymmetric I-V’s result when Eq. �8� is satisfied, as
shown in Fig. 2�b�. The condition for asymmetry to occur is
just based on the ratio between the positive and negative bias
plateau currents, and generally depends on various cou-
plings. Thus, Eqs. �6�–�8� summarize the central concept of
this paper. We will show in the next section that they provide
a clear explanation for experimental observations reported
for a weakly coupled DQD system. It is worth noting that
these conditions can be generalized even if the Fock-space
states �A�, �B�, and �C� have specific degeneracies,26 provided
the rate constants �ij

L,R are modified by appropriate degen-
eracy factors. At this point, it is also worth noting that the
degeneracies considered here are such that individual pro-
cesses that are involved in the transitions are uncorrelated.
This justifies the use of rate equations ignoring off-diagonal
effects. Inclusion of off-diagonal terms, via a density matrix
rate equation,27 may be required to capture other subtle
degeneracies28 not considered here.

Before, we discuss coupled quantum dots, it is useful to
look into a simpler example discussed by various works15,28

and see how it maps onto our generic “blocking state” model
�Fig. 1�b��. Consider a single quantum dot with two nonde-
generate levels, one up spin and one down spin, as shown in
Fig. 3�a�. The Fock-space picture in Fig. 3�b� looks just like
Fig. 1�b� with �A� being the state with no electron �00�, �B�
being the state with one up electron �↑�, �A� being the state

with no electron �00�, and �C� being the state with one down
electron �↓�. Note that the state with two electrons is assumed
to have too high an energy to be accessed in the bias range of
interest. It is easy to see that for positive bias that �AB

L =�↑
L,

�AC
L =�↓

L, �AB
R =�↑

R, and �AC
R =�↓

R, where �↑,↓
L,R denotes the con-

tact couplings with up and down spin reservoir channels.
Ordinary contacts typically have �↑=�↓, so that the NDR
criteria �Eqs. �6� and �7�� are never satisfied. However, if one
contact, say, the right is spin polarized �↓

R
�↑
R then NDR

criteria is met for positive bias though not for negative bias.

III. PAULI BLOCKADE IN WEAKLY COUPLED-DOUBLE
QUANTUM DOTS

Our idea of blocking states involves an inherent asymme-
try within the transport problem. In our previous example
�Fig. 3�, this was achieved by explicitly postulating a spin
polarized contact as the asymmetry mechanism. Asymme-
tries leading to blocking states can also arise from asymme-
tries within the system’s internal degrees, thus requiring no a
priori conditions on bare physical contact couplings. The
asymmetry effects now enter the model through coherence
factors mentioned earlier in Eq. �2�. The rest of this paper
focuses on how these coherence factors could lead to the
NDR conditions �Eqs. �6� and �7�� derived in the earlier sec-
tion.

We consider a DQD system, shown in Fig. 4�a�, with
orbital energies �1��2 and specifically �1��2 on each dot.
We will now show that, for specific orbital offsets ��= ��2
−�1�, its interplay with hybridization t and Coulomb repul-
sion Ump can result in a current collapse following the notion
developed in the past section. The I-V characteristics dis-

FIG. 2. I-V characteristics: �a� Forward bias I-V characteristics
of the three state system with �AB

L and �AB
R set to 1 meV. As �CA

R is
varied, the plateau currents Ip1 and Ip2 resulting from a serial access
of transport channels �1 and �2 with bias result in a staircase Ip1

� Ip2, saturation Ip1= Ip2, or NDR Ip2� Ip1. Forward bias NDR is
achieved when Eq. �6� is satisfied, say, when �CA

R =0.3 meV. The
magnitude of this blockade current Ip2 is then governed by �CA

R . �b�
Reverse bias NDR due to the condition �Eq. �7�� is governed by the
removal rate �CA

L .

FIG. 3. �Color online� �a� A simple physical realization of the
above NDR condition using a single interacting quantum dot with
spin split levels coupled to two reservoirs, one �say, the left� that is
unpolarized and the other �right� one spin polarized in the up direc-
tion. �b� This situation automatically satisfies the NDR condition
with �↓� acting as the blocking state �C�, as shown in the Fock-space
diagram. �c� An equivalent transport energy diagram simply implies
that the conducting state transport channel �↑ is lifted out of the bias
window by an amount U due to the interaction with �↓ blocked

inside the device, since �↓
R�0. �L� ��↓±

kBT

q � ensures that the
blocked electron is not reinjected to the left contact.
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cussed in this section closely match the experimental
features1 that indicate Pauli spin blockade.

A. Electronic structure of a double quantum dot

In this paper, we consider a double quantum dot, as shown
in Fig. 4�a�, that comprises of two dots whose lowest spin

degenerate orbitals are labeled a , ā and b , b̄, respectively.
Our analysis is limited to one orbital per quantum dot, thus
restricting our analysis to a few meV along either bias direc-
tions. Higher orbitals on each quantum dot can in a similar
way result in multiple NDRs �Ref. 1� along either bias direc-
tions. These higher orbital effects are accessed at a much
higher bias than those considered here. We believe that the
higher bias features are an extension of the general idea de-
veloped here, which will be addressed in a future work. Let
us now define the DQD Hamiltonian17,19,20 in a localized
orbital basis as

HQD = �
m

�mnm + �
p

�tmpcm
† cp + c.c.� + Um↑m↓nm↑nm↓

+
1

2�
p

Umpnmnp, �9�

where the left and right dot single particle states are �a�, �ā�
and �b�, �b̄�, respectively, ā, b̄ denoting the opposite spin
state. tmp denotes the hopping term between the two dots, and
Um↑m↓, and Ump denote the on-site and long-range Coulomb
repulsion term’s, respectively. The many-electron spectrum
shown in Fig. 4�b� comprises of 16 states labeled as �N , i�
defined by the number of electrons N and the excitation num-

ber i. Six states that are relevant to our spin blockade discus-
sion are labeled within the boxed sections in Fig. 4�b�, and
form a subset of the N=1 and N=2 blocks. The six states
consist of a doubly degenerate bonding �1,0� state in the N
=1 subspace

�B+� = ��a� + ��b� ,

�B−� = ��ā� + ��b̄� , �10�

a singlet �2,0� state in the N=2 subspace

�S� = ���ab̄� − �āb�� + ��aā� + 	�bb̄� , �11�

and a threefold degenerate triplet �2,1� states also in the N
=2 subspace given by

�T+1� = �ab� ,

�T0� =
1
	2

��ab̄� + �āb�� ,

�T−1� = �āb̄� . �12�

Here �, �, �, �, and 	 represent the wave-function coeffi-
cients for the various basis Fock states. We shall see in the
following subsection that these wave-function coefficients
depend on the physical parameter set �1 ,�2 , t ,U11,U22,U12
of the DQD, and hence appear in the calculation of various
coherence factors �Eq. �2�� involved in the transition rates. It
is worth noting that the antibonding level �1,1� of the N=1
spectrum is not involved in the Pauli-Blockade NDR. This is
because in the weakly coupled DQD that we consider here,
the bonding-antibonding gap is directly proportional to the
orbital energy offset ��, which is of the order of a few mil-
livolts. The energy scale relevant to our NDR discussion is
the singlet-triplet splitting which is of a couple of orders of
magnitude smaller given that the DQD system is weakly
coupled. The antibonding state then becomes relevant be-
yond the bias range considered here where the spin blockade
is lifted.

Coherence factors. Although six states �Fig. 4�b�� are in-
volved in the spin blockade I-V characteristics within the
bias range of interest, they can be cast in the familiar tristate
form �Fig. 1�b��, as shown in Fig. 5, by incorporating the
appropriate degeneracy factors26 for the transition rates. The
degenerate states may just be lumped as one state under such
specific conditions.26 The coherence factors are evaluated be-
tween two states that differ by an electron, whose structure
and symmetry properties depend on the physical parameter
set of the DQD and how the individual dots couple to the
two electrodes. The general definition is as follows:

�ij
� = ���
N,i�cm

† �N − 1, j��2, �13�

where cm
† is the creation and/or annihilation operators for an

electronic state on the end dot coupled with the correspond-
ing electrode, and �� is the bare left or right electrode cou-
pling factor defined in Sec. I. In our case, the coherence
factors are evaluated between the �a� �1,0� bonding and �2,0�
singlet

FIG. 4. Many-electron spectrum of a DQD system. �a� Orbital

energies of the two spin degenerate ground levels a , ā and b , b̄ on
each dot are given by �1 and �2. On-site and long range charging
parameters are given by U11, U22, and U12, respectively. The inter-
dot hopping parameter is t. �b� The many-electron spectrum com-
prises of 16 states, as shown in �b�, labeled as �N , i�. States within a
charge subspace are just numbered and are not necessarily in any
energetic order. The N=1 and N=2 spectra are relevant to the
present discussion. The three-state system responsible for spin
blockade has degeneracies and consists of two bonding �B�, one
singlet �S�, and three triplet �T�, respectively. �c� The first two tran-
sitions involved in the spin blockade NDR are the two transport
channels which can be recast in the familiar tristate form shown
�Fig. 1�b��.
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�00
L = �L�
S�ca,ā

† �B−�B+���2 = �L��� + ���2,

�00
R = �R�
S�c

b,�b̄�
† �B−�B+���2 = �R��� + �	�2, �14�

�b� �1,0� bonding and �2,1� triplet states

�10
L = �L��
T0�ca

†�B−��2 + �
T0�cā
†�B+��2� = �
T±1�ca,�ā�

† �B���2

= �L�2,

�10
R = �R��
T0�cb

†�B−��2 + �
T0�c
b̄

†�B+��2� = �
T±1�c
b,�b̄�
† �B���2

= �R�2. �15�

Recall that the transport feature central to the Pauli-blockade
experiments is the occurrence of multiple NDRs �Ref. 1�
along both bias directions, and this condition must be recast
into the model developed in the first section. Therefore, the
basic criterion for NDR to occur along the positive bias
�VD�0� direction is

1

2�10
R �

1

�00
L +

1

2�00
R , �16�

and along the negative bias direction �VD�0� is

1

3�10
L �

1

2�00
L +

1

�00
R . �17�

Notice that NDR conditions in the above equations also in-
clude degeneracy factors as depicted in Fig. 5. A direct sub-
stitution from Eqs. �14� and �15� with �L=�R yields

1

2�2 �
1

��� + ���2 +
1

2��� + �	�2 , �18�

along the positive bias direction and

1

3�2 �
1

2��� + ���2 +
1

��� + �	�2 , �19�

along the negative bias direction. To apply these relations,
we need to consider the wave-function coefficients �, �, �,
�, and 	 in more detail.

B. Spin blockade transport

Consider first the wave-function coefficients � and � for
the N=1 bonding state �B± �. It is easily seen that ��� for
��� t and ��� when ��� t, given that �1��2. The two
electron triplet �see Fig. 5� is relatively unaffected by elec-
tronic structure variations, but the singlet state described by
the wave-function coefficients �, �, and 	 requires some
more discussion.

The presence of a single electron �Fig. 6� in one dot in-
fluences the addition of another on either of them as a result
of on-site or long-range Coulomb interaction. For t��� ,U
relative magnitudes of �, �, and 	 now depend on offsets
between the total energies of the three configurations shown
in Fig. 6 which we shall consider now.

Transport scenarios. Consider three transport scenarios
depicted in Fig. 7, which are based on the relative offsets
between orbital energies ��=�1−�2 and relative offsets be-
tween the two electron wave-function configurations �Fig. 6�
�E1=�1+U11−�2−U12, and �E2=�2+U22−�1−U12. In all
our simulations, we have used parameters consistent with a
weakly coupled DQD structure in �Ref. 1�, with t=0.2
−0.3 meV, U11=U22=4 meV, and �L=�R=0.01 meV, while
other parameters are varied to the three cases depicted in Fig.
7.

FIG. 5. �Color online� Internal structure of the three-state sys-
tem: This three-state system responsible for spin blockade com-
prises of one-electron bonding �B�, two electron singlet �S�, and
triplet �T�, respectively. Electronic configuration of the three states
is also shown alongside. The singlet, triplet, and bonding states
form the trio of Fock-space states involved in the SB I-V charac-
teristics, with the triplet state being the blocking state.

FIG. 6. Understanding the internal structure of the two electron
singlet: Here, both on-dot Umm and long-range Coulomb repulsion
Ump affect the wave function, by raising the on-site energy of the
second electron depending on where the first electron is localized.
The singlet state is a superposition between the states with one

electron in each dot ��ab̄� , �āb� , �ab� , �āb̄�� and the ones with both on

either dots ��aā� and �bb̄��. A remarkable consequence of the inter-
play of electron correlations, hopping, and orbital energy offset is
the fact that the singlet state is a mixture of states localized on the
same dot with states present on both,29 The wave-function coeffi-
cients �, �, and 	 signify the contribution of each configuration and
can be varied by tuning the DQD’s internal structure parameters.
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Case I: Coulomb staircase. In first scenario shown in Fig.
7�a�, ��=0, U11=U22, which implies �=�= 1

	2
and �=	. A

straightforward evaluation of coherence factors from Eqs.
�14� and �15� implies that the criterion for NDR given in
Eqs. �16� and �17�, is never satisfied, leading to regular CB
staircase I-V characteristics shown in Fig. 8�a�.30 In this case,
both left and right contacts act equally efficient in electron
addition and removal processes and hence no such blocking
states can be formed. Thus, the NDR phenomenon is absent.

Case II: Forward bias current collapse. In this case, 2�2
+U22��1+�2+U12, which implies that the two electron state

�bb̄� is almost degenerate with � 1
	2

��ab̄�− �āb��� implying that
both electrons, whenever in a singlet state, can either reside
inside dot 2 alone or one in both dots. The condition �1
��2 makes it energetically unfavorable to access �aā� result-
ing in ��	��. Under these conditions, note that our for-
ward bias NDR condition �Eqs. �16� and �18��, results in

1

2�2 �
1

����2 +
1

2��	�2 , �20�

which is trivially satisfied in our case �1��2. The I-V char-
acteristics now show a prominent NDR, as shown in Fig.
8�b�, noted in the experimental trace shown in Fig. 8�d�. The
parameter � dictates how effective the right contact �also see
Eq. �15�� is in the electron removal process between the trip-
let and bonding states. Recall that ��� when �1��2, imply-
ing that the right contact has a very inefficient triplet re-
moval, thus blocking the triplet within the DQD system. This
causes a current collapse once the population of triplet state
is energetically feasible. The forward bias I-V shown in Fig.
8�b� shows a strong NDR with current collapse leading to a
small leakage current, once the bias permits the access of
transport channel �10 in the bias window. In the Fock-space
picture �Figs. 4�c� and 5�, current at lower bias due to

�B�↔ �S� drops once the transition �B�↔ �T� occurs since �T�
is a blocking state. Note that when transitions �B�↔ �S� and
�B�↔ �T� are simultaneously accessed, the system is set in a
blocking state once threshold is reached, thereby no NDR
occurs. This is shown dotted in Fig. 8�b� and occurs
experimentally,2 upon application of gate potential, thereby
changing the relative position of threshold voltage. We also
find that a finite but small leakage current in the order of
5–10 pA occurs due to a finite �10

L ��2 corresponding to the
leakage of triplet into a bonding state. Importantly this leak-
age current reduces by further detuning the dots, making the
bonding state more localized on the second dot, such that

�10
L ��2→0. Since �=

IP�V�0�

IP�V�0� �1, we see a clear asymmetry

between the two bias directions in the I-V characteristics.
Case III: Multiple current collapse. Seldom do parameters

exactly match the condition 2�2+U22��1+�2+U12, experi-
mentally thus making it possible for reverse bias NDRs too.
This corresponds to the scenario depicted in Fig. 7�c�. The
important consequence of Eqs. �6� and �7� was that NDR
along a bias direction only depends on how the blocking
state is coupled to the emptying reservoir. Now the negative
bias �VD�0� NDR condition simply is 1

3�10
L �

1
�00

R + 1
2�00

L ,
whichis also satisfied when �1+U12��2+U22. Under these
conditions, shown in Figs. 7�c� and 8�c�, a mild NDR is

FIG. 7. �Color online� Transport scenarios through a DQD sys-
tem. �a� Zero orbital offset ��=0: When U11=U22�U12, NDR con-
dition is not satisfied under any bias conditions. �b� Finite orbital
offset ���0 with resonance �1+U12=�2+U22: Condition for posi-
tive bias NDR is satisfied. �c� Finite orbital offset ���0 and off-
resonance �1+U12��2+U22: the NDR condition is satisfied for
both bias directions.

FIG. 8. I-V characteristics corresponding to various transport
scenarios: �a� Regular Coulomb-blockade plateaus in the absence of
orbital offset, since NDR condition is not satisfied. �b� Forward bias
NDR occurs when there is finite orbital offset along with resonance
condition corresponding to Fig. 7�b�. The NDR condition derived in
Eq. �6� is physically achieved in the DQD system by orbital offset
such that ���. Furthermore, the resonance condition U22−U11

=�1−�2 implies �=	, thus resulting in 1
�10

R �
1

�00
R + 1

�00
L . Also shown

dotted is the fact that NDR need not occur when the blocking state
is simultaneously accessed with the conducting state. This can oc-
cur by varying gate voltage �Ref. 2�. �c� Reverse bias NDRs can
also occur in the presence of finite orbital offset with off-resonance
discussed in Fig. 7�c�. ��d� and �e�� (Reprinted with permission from
K. Ono et al., Science �2002� and K. Ono and S. Tarucha, Phys.
Rev. Lett. �2004�). Experimental traces �Refs. 1 and 2� correspond-
ing to theoretical plots �b� and �c�.
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noted even in the reverse direction, in good match with ex-
perimental �Figs. 8�d� and 8�e�� observations.1

The experimental I-V’s also show a lifting of spin block-
ade followed by successive NDRs at higher positive bias
directions. The lifting of NDRs can be explained simply due
to access of transport channels between two electron higher
excitations and one-electron antibonding states. A consistent
match with experimental features will, however, involve the
inclusion of more orbitals within each dot, such as p-type
orbitals, which we shall address in a future work. The fun-
damentals of NDRs collapse and rectification still remain
within our general framework derived in this paper.

IV. CONCLUSION

In this paper, we have developed a general model for
multiple current collapse �NDRs� to occur in the I-V charac-
teristics of strongly interacting systems using the idea of
blocking transport channels. With the aid of this model, we
have provided an interpretation of nonlinear transport
through weakly coupled quantum dots in the Pauli spin
blockade regime. Our model captures subtle experimental
observations in this regime that include multiple current col-
lapses which are gateable, leakage currents, and rectification,
all of which are consistent with the experimental double
quantum dot setup. We believe that this model can be ex-
ploited in the understanding of other blockade mechanisms
that can arise from different internal degrees inside a
Coulomb-blockaded system.
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APPENDIX: DERIVATION OF PLATEAU CURRENTS

The plateau currents Ip1 and Ip2 shown in Fig. 1�c� are the
saturation currents due to transitions �A�↔ �B� and �A�↔ �C�
whose one-electron energies are �1=EB−EA and �2=EC−EA,
respectively. For plateau currents �say� under positive bias
��L��R shown in Fig. 1�b��, additive transitions rates are
given by RA→�B,C�=RA→�B,C�

L and removal transitions are
given by R�B,C�→A=R�B,C�→A

R . Furthermore, in order to evalu-
ate Ip1, given a sequential access of the two transitions, only
states �A� and �B� appear in Eqs. �1� and �3�. A steady-state
solution of this master equation, Eq. �1�, with PC=0 along
with PA+ PB=1 gives

PA =
RB→A

RA→B + RB→A
,

PB =
RA→B

RA→B + RB→A
. �A1�

Using Eq. �3�, and the fact that fL��1�=1 and fR��1�=0 for
positive bias, plateau current Ip1 is expressed as

Ip1 =
q2



�RA→B

L PA� =
q2



�RB→A

R PB� =
q2




RA→B
L RB→A

RA→B + RB→A
.

�A2�

At a higher bias, the transport channel �2=EC−EA, due to
transition �A�↔ �C�, is accessed and thus we have to evaluate
the stationary solution of the three-state master equation, Eq.
�1�. The steady-state solution of Eq. �1�, along with PA+ PB
+ PC=1, yields the nonequilibrium probabilities of the three
states as

PA =
1

1 +
RA→B

RB→A
+

RA→C

RC→A

,

PB =
RA→B

RB→A

1

1 +
RA→B

RB→A
+

RA→C

RC→A

,

PC =
RA→C

RC→A

1

1 +
RA→B

RB→A
+

RA→C

RC→A

. �A3�

Similarly as in Eq. �A2�, with the fact that fL��2�=1 and
fR��2�=0, the second plateau current Ip2 is expressed as

Ip2 =
q2



�RA→B

L PA + RA→C
L PA� =

q2



�RB→A

R PB + RC→A
R PC�

=
q2




RA→B
L + RA→C

R

1 +
RA→B

L

RB→A
R +

RA→C
L

RC→A
R

. �A4�

The expressions derived above are cast in terms of rates in
general. One has to observe that each plateau current corre-
sponds to a situation when only one contact contributes to
the addition of an electron while the other to the removal.
This implies fL���=1 and fR���=0 for positive bias ��L

��R� and vice versa. Hence, the rates, using Eq. �2�, are
now given by

RA→B
L = �LMAB

L = �AB
L ,

RA→C
L = �LMAC

L = �AC
L ,

RB→A
R = �RMAB

R = �BA
R ,

RB→C
R = �RMAB

R = �CA
L . �A5�

Under these conditions, it is easy to see that Ip1 and Ip2
follow the expressions in Eq. �4�, and that conditions for
NDRs under positive and negative bias conditions �Eqs. �6�
and �7�� are easily obtained by replacing �ij

L’s by �ij
R’s.
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