903 research outputs found

    Screening effects in superconductors

    Get PDF
    The partition function of the Hubbard model with local attraction and long range Coulomb repulsion between electrons is written as a functional integral with an action AA involving a pairing field Δ\Delta and a local potential VV. After integration over VV and over fluctuations in Δ2|\Delta|^{2}, the final form of AA involves a Josephson coupling between the local phases of Δ\Delta and a "kinetic energy" term, representing the screened Coulomb interaction between charge fluctuations. The competition between Josephson coupling and charging energy allows to understand the relation between TCT_{C} and composition in high-TCT_{C} materials, in particular superlattices, alloys and bulk systems of low doping.Comment: 4 pages, revtex, no figures, submitted to Physica B (Proceedings of SCES '96 International Conference, held in Zurich from 19th to 21st of August

    Modified ultrafast thermometer UFT-M and temperature measurements during Physics of Stratocumulus Top (POST)

    Get PDF
    A modified UFT-M version of the ultrafast airborne thermometer UFT, aimed at in-cloud temperature measurements, was designed for the Physics of Stratocumulus Top (POST) field campaign. Improvements in its construction resulted in the sensor's increased reliability, which provided valuable measurements in 15 of the 17 flights. Oversampling the data allowed for the effective correction of the artefacts resulting from the interference with electromagnetic transmissions from on-board avionic systems and the thermal noise resulting from the sensor construction. The UFT-M records, when averaged to the 1.4 and 55 m resolutions, compared to the similar records of a thermometer in a Rosemount housing, indicate that the housing distorts even low-resolution airborne temperature measurements. Data collected with the UFT-M during the course of POST characterise the thermal structure of stratocumulus and capping inversion with the maximum resolution of ~1 cm. In this paper, examples of UFT-M records are presented and discussed

    Analysis of time-profiles with in-beam PET monitoring in charged particle therapy

    Full text link
    Background: Treatment verification with PET imaging in charged particle therapy is conventionally done by comparing measurements of spatial distributions with Monte Carlo (MC) predictions. However, decay curves can provide additional independent information about the treatment and the irradiated tissue. Most studies performed so far focus on long time intervals. Here we investigate the reliability of MC predictions of space and time (decay rate) profiles shortly after irradiation, and we show how the decay rates can give an indication about the elements of which the phantom is made up. Methods and Materials: Various phantoms were irradiated in clinical and near-clinical conditions at the Cyclotron Centre of the Bronowice proton therapy centre. PET data were acquired with a planar 16x16 cm2^2 PET system. MC simulations of particle interactions and photon propagation in the phantoms were performed using the FLUKA code. The analysis included a comparison between experimental data and MC simulations of space and time profiles, as well as a fitting procedure to obtain the various isotope contributions in the phantoms. Results and conclusions: There was a good agreement between data and MC predictions in 1-dimensional space and decay rate distributions. The fractions of 11^{11}C, 15^{15}O and 10^{10}C that were obtained by fitting the decay rates with multiple simple exponentials generally agreed well with the MC expectations. We found a small excess of 10^{10}C in data compared to what was predicted in MC, which was clear especially in the PE phantom.Comment: 9 pages, 5 figures, 1 table. Proceedings of the 20th International Workshop on Radiation Imaging Detectors (iWorid2018), 24-28 June 2018, Sundsvall, Swede

    Corporate Culture and Its Connection with External and Internal Public Relations

    Get PDF
    The main aim of this article is to present the influence of corporate culture on company's stakeholders. This paper signalises the tendency in corporate communication with its internal and external publics. It is focused on two issues: corporate social responsibility and employer branding. Those two categories are consequences of corporate culture model.Głównym celem artykułu jest zaprezentowanie wpływu jaki wywiera charakter kultury korporacyjnej na związanych z przedsiębiorstwem interesariuszy (stakeholders). W artykule zasygnalizowane zostały główne tendencje wyznaczające charakter komunikacji między organizacją a jej wewnętrznym i zewnętrznym otoczeniem. Tekst koncentruje się na dwóch kwestiach: społecznej odpowiedzialności przedsiębiorstwa (corporate social responsibilty) i budowanie wizerunku pracodawcy (employer branding), które zaprezentowane zostały jako efekty określonego modelu kultury organizacyjnej

    First-order transitions and triple point on a random p-spin interaction model

    Full text link
    The effects of competing quadrupolar- and spin-glass orderings are investigated on a spin-1 Ising model with infinite-range random pp-spin interactions. The model is studied through the replica approach and a phase diagram is obtained in the limit pp\to\infty. The phase diagram, obtained within replica-symmetry breaking, exhibits a very unusual feature in magnetic models: three first-order transition lines meeting at a commom triple point, where all phases of the model coexist.Comment: 9 pages, 2 ps figures include

    Temperature-doping phase diagram of layered superconductors

    Full text link
    The superconducting properties of a layered system are analyzed for the cases of zero- and non-zero angular momentum of the pairs. The effective thermodynamic potential for the quasi-2D XY-model for the gradients of the phase of the order parameter is derived from the microscopic superconducting Hamiltonian. The dependence of the superconducting critical temperature T_c on doping, or carrier density, is studied at different values of coupling and inter-layer hopping. It is shown that the critical temperature T_c of the layered system can be lower than the critical temperature of the two-dimensional Berezinskii-Kosterlitz-Thouless transition T_BKT at some values of the model parameters, contrary to the case when the parameters of the XY-model do not depend on the microscopic Hamiltonian parameters.Comment: To be published in Phys. Rev.

    Interaction-induced Bose Metal in 2D

    Full text link
    We show here that the regularization of the conductivity resulting from the bosonic interactions on the `insulating' (quantum disordered) side of an insulator-superconductor transition in 2D gives rise to a metal with a finite conductivity, σ=(2/π)4e2/h\sigma =(2/\pi) 4 e^2/h, as temperature tends to zero. The Bose metal is stable to weak disorder and hence represents a concrete example of an interaction-induced metallic phase. Phenomenological inclusion of dissipation reinstates the anticipated insulating behaviour in the quantum-disordered regime. Hence, we conclude that the traditionally-studied insulator-superconductor transition, which is driven solely by quantum fluctuations, corresponds to a superconductor-metal transition. The possible relationship to experiments on superconducting thin films in which a low-temperature metallic phase has been observed is discussed.Comment: A figure has been added and the physics has been clarified. To appear in PR

    Time reparametrization group and the long time behaviour in quantum glassy systems

    Full text link
    We study the long time dynamics of a quantum version of the Sherrington-Kirkpatrick model. Time reparametrizations of the dynamical equations have a parallel with renormalization group transformations, and within this language the long time behaviour of this model is controlled by a reparametrization group (Rp_pG) fixed point of the classical dynamics. The irrelevance of the quantum terms in the dynamical equations in the aging regime explains the classical nature of the violation of the fluctuation-dissipation theorem.Comment: 4 page

    Monitoring Proton Therapy Through In-Beam PET: An Experimental Phantom Study

    Get PDF
    In this paper, we investigate the use of a positron emission tomography (PET) system to monitor the proton therapy. The monitoring procedure is based on the comparison between the β+ activity generated in the irradiated volume during the treatment, with the β+ activity distribution obtained with Monte Carlo (MC) simulation. The dedicated PET system is a dual head detection system; each head is composed of nine scintillating LYSO crystal matrices read out independently with a custom modularized acquisition system. Our experimental data were acquired at the Cyclotron Centre Bronowice, Institute Nuclear Physics in Kraków, Poland, and were simulated with the FLUKA MC code. Homogeneous and heterogeneous plastic phantoms were irradiated with monoenergetic 130 MeV protons. The capabilities of our PET system to distinguish different irradiated materials were investigated, and the proton pencil-beams were used as probes. Our focus was to analyze the activity width and the total activity event number in several cases. Irradiations were performed using either single pencil-beams one at a time, or two pencil-beams during the same data taking. The comparison of 1-D activity profile for experimental data and MC simulation were always in good agreement showing that, the treatment quality assessment in proton therapy can be based on β+ activity measurements
    corecore