42 research outputs found
Fused 1,2,3-dithiazoles: convenient synthesis, structural characterization, and electrochemical properties
A new general protocol for synthesis of fused 1,2,3-dithiazoles by the reaction of cyclic oximes with S2Cl2 and pyridine in acetonitrile has been developed. The target 1,2,3-dithiazoles fused with various carbocycles, such as indene, naphthalenone, cyclohexadienone, cyclopentadiene, and benzoannulene, were selectively obtained in low to high yields. In most cases, the hetero ring-closure was accompanied by chlorination of the carbocyclic moieties. With naphthalenone derivatives, a novel dithiazole rearrangement (15→13) featuring unexpected movement of the dithiazole ring from α- to β-position, with respect to keto group, was discovered. Molecular structure of 4-chloro-5H-naphtho[1,2-d][1,2,3]dithiazol-5-one 13 was confirmed by single-crystal X-ray diffraction. Electrochemical properties of 13 were studied by cyclic voltammetry and a complex behavior was observed, most likely including hydrodechlorination at a low potential
Synthesis and properties of the heterospin (S1 = S2 = 1/2) radical-ion salt bis(mesitylene)molybdenum(I) [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazolidyl
The authors are grateful to the Presidium of the Russian Academy of Sciences (Project 8.14), the Royal Society (RS International Joint Project 2010/R3), the Leverhulme Trust (Project IN-2012-094), the Siberian Branch of the Russian Academy of Sciences (Project 13), the Ministry of Education and Science of the Russian Federation (Project of Joint Laboratories of Siberian Branch of the Russian Academy of Sciences and National Research Universities), and the Russian Foundation for Basic Research (Projects 13-03-00072 and 15-03-03242) for financial support of various parts of this work. N.A.S. thanks the Council for Grants of the President of Russian Federation for postdoctoral scholarship (grant MK-4411.2015.3). B.E.B. is grateful for an EaStCHEM Hirst Academic Fellowship. A.V.Z. thanks the Foundation named after D. I. Mendeleev, Tomsk State University, for support of his work.Low-temperature interaction of [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazole (1) with MoMes2 (Mes = mesitylene / 1,3,5-trimethylbenzene) in tetrahydrofuran gave the heterospin (S1 = S2 = 1/2) radical-ion salt [MoMes2]+[1]– (2) whose structure was confirmed by single-crystal X-ray diffraction (XRD). The structure revealed alternating layers of the cations and anions with the Mes ligands perpendicular, and the anions tilted by 45°, to the layer plane. At 300 K the effective magnetic moment of 2 is equal to 2.40 μB (theoretically expected 2.45 μB) and monotonically decreases with lowering of the temperature. In the temperature range 2−300 K, the molar magnetic susceptibility of 2 is well-described by the Curie-Weiss law with parameters C and θ equal to 0.78 cm3⋅K⋅mol–1 and −31.2 K, respectively. Overall, the magnetic behavior of 2 is similar to that of [CrTol2]+[1]– and [CrCp*2]+[1]–, i.e. changing the cation [MAr2]+ 3d atom M = Cr (Z = 24) with weak spin-orbit coupling (SOC) to a 4d atom M = Mo (Z = 42) with stronger SOC does not affect macroscopic magnetic properties of the salts. For the XRD structure of salt 2, parameters of the Heisenberg spin-Hamiltonian were calculated using the broken-symmetry DFT and CASSCF approaches, and the complex 3D magnetic structure with both the ferromagnetic (FM) and antiferromagnetic (AF) exchange interactions was revealed with the latter as dominating. Salt 2 is thermally unstable and slowly loses the Mes ligands upon storage at ambient temperature. Under the same reaction conditions, interaction of 1 with MoTol2 (Tol = toluene) proceeded with partial loss of the Tol ligands to afford diamagnetic product.PostprintPostprintPeer reviewe
The Conversion of 5,5′-Bi(1,2,3-dithiazolylidenes) into Isothiazolo[5,4-d]isothiazoles
Thermolysis of 4,4′-dichloro-, 4,4′-diaryl-, and 4,4′-di(thien-2-yl)-5,5′-bi(1,2,3-dithiazol-ylidenes) affords the respective 3,6-dichloro-, 3,6-diaryl- and 3,6-di(thien-2-yl)isothiazolo[5,4-d]-isothiazoles in low to high yields. The transformation of the 4,4′-diaryl- and 4,4′-di(thien-2-yl)-5,5′-bi(1,2,3-dithiazolylidenes) occurs at lower temperatures in the presence of the thiophiles triphenylphosphine or tetraethylammonium iodide. Optimized reaction conditions and a mechanistic rationale for the thiophile-mediated ring transformation are presented
Direct Exchange of Oxygen and Selenium Atoms in the 1,2,5-Oxadiazoles and 1,2,5-Selenadiazoles by Action of Sulfur Monochloride
A short synthetic approach to fused 1,2,5-thiadiazoles from the corresponding 1,2,5-oxadiazoles and 1,2,5-selenadiazoles has been developed. Mono- and bis(1,2,5-thiadiazoles) were selectively obtained in high yields. The pathways for these novel reactions were discussed
Selective synthesis of bis[1,2]dithiolo[1,4]thiazines from 4-isopropylamino-5-chloro-1,2-dithiole-3-ones
Reaction of 4-isopropylamino-5-chloro-1,2-dithiole-3-ones 3 and S2Cl2 in acetonitrile gave selectively 3-oxo-bis[1,2]dithiolo[1,4]thiazine-5-thiones 1 by the addition of triethylamine and bis[1,2]dithiolo[1,4]thiazine-3,5-diones 5 under the action of formic acid. 3,5-Diones 5 were also obtained by intramolecular cyclization of N,N-bis(5-chloro-3-oxo[1,2]dithiol-4-yl)amines 6 with S2Cl2 in the presence of Et3N
Synthesis of 2,3-dihydronaphtho[2,3-d][1,3]thiazole-4,9-diones and 2,3-dihydroanthra[2,3-d][1,3]thiazole-4,11-diones and novel ring contraction and fusion reaction of 3H-spiro[1,3-thiazole-2,1'-cyclohexanes] into 2,3,4,5-tetrahydro-1H-carbazole-6,11-diones
Treatment of N-substituted 2-(methylamino)naphthoquinones 3 and -anthracene-1,4-diones 4 with S2Cl2 and DABCO in chlorobenzene gave the corresponding 2,3-dihydronaphtho[2,3-d][1,3]thiazole-4,9-diones 1 and 2,3-dihydroanthra[2,3-d][1,3]thiazole-4,11-diones 2 by triethylamine addition, in high to moderate yields. The DABCO replacement for N-ethyldiisopropylamine in the reaction of anthracene-1,4-diones 4 led unexpectedly to the corresponding 2-thioxo-2,3-dihydroanthra[2,3-d][1,3]thiazole-4,11-diones 10. The reaction of 3H-spiro[1,3-thiazole-2,1'-cyclohexanes] 1d, 2d with Et3N in chlorobenzene under reflux yielded 2,3,4,5-tetrahydro-1H-carbazole-6,11-diones 15, 16, i.e., ring contraction and fusion products. A plausible mechanism was proposed for the formation of the products