21 research outputs found

    Japan's research on droplet and droplet array combustion

    Get PDF
    In Japan, the ignition and combustion of the droplet and droplet array have been investigated by using microgravity condition. This is the short introduction of those studies; interactive combustion of two droplets, ignition experiment on droplet array, and microexplosion behavior of an emulsified fuel droplet

    High-pressure combustion of binary fuel sprays

    Get PDF
    The ultimate objective of this study is to obtain fundamental information relevant to combustion processes that occur in fuel sprays of practical interest at high pressures in internal combustion engines. Since practical fuels are multicomponent and derived from petroleum, the present work involves the model alkane mixture of n-heptane and n-hexadecane. Since burning droplets in sprays can interact with each other, the present work involves investigation of the effects of this interaction on flame shapes and droplet burning times. The small droplets in practical combustion chambers are not significantly influenced by buoyancy. Since such small droplets are difficult to study experimentally, the present work takes advantage of microgravity to lessen buoyancy and enable information about droplet interactions to be obtained by studying larger droplets. The results are intended to provide fundamental understanding that can be used in improving descriptions of practical spray combustion

    Diffusion Flame Behavior by a Burner of Porous Cylinder in Electrical Fields

    No full text

    Interaction Effects on Combustion of Alcohol Droplet Pairs

    No full text
    Experimental investigation was conducted on two droplet-array combustion of methanol and methanol/dodecanol mixture fuels in microgravity. For methanol, effects of ambient pressure and droplet spacing were examined. Results show that the droplet lifetime decreases with increasing spacing at relatively low pressure and the droplet lifetime becomes independent of spacing at higher-subcritical and supercritical pressures. For methanol/dodecanol mixture, effects of pressure, fuel composition were investigated in terms of occurrence of disruption. Disruption of droplet during combustion was demonstrated both for single droplet and droplet pairs

    A Basic Behavior of CNG DI Combustion in a Spark-Ignited Rapid Compression Machine

    No full text
    A basic characteristics of compressed natural gas direct-injection (CNG DI) combustion was studied by using a rapid compression machine. Results show that comparing with homogeneous mixture, CNG DI has short combustion duration, high pressure rise due to combustion, and high rate of heat release, which are considered to come from the charge stratification and the gas flow generated by .the fuel injection. CNG DI can realize extremely lean combustion which reaches 0.03 equivalence ratio, φ. Combustion duration, maximum pressure rise due to combustion and combustion efficiency are found to be insensitive to the injection modes. Unburned methane showed almost the same level as that of homogeneous mixture combustion. CO increased steeply with the increase in φ when φ was greater than 0.8 due to the excessive stratification, and NO_x peak value shifted to the region of lower φ. Combustion inefficiency maintains less than 0.08 in the range of φ from 0.1 to 0.9 and increases at very low φ due to bulk quenching and at higher φ due to excessive stratification. The combustion efficiency estimated from combustion products shows good agreement with that of heat release analysis
    corecore