19,976 research outputs found

    Electric Dipole Moments in the Generic Supersymmetric Standard Model

    Get PDF
    The generic supersymmetric standard model is a model built from a supersymmetrized standard model field spectrum the gauge symmetries only. The popular minimal supersymmetric standard model differs from the generic version in having R-parity imposed by hand. We review an efficient formulation of the model and some of the recently obtained interesting phenomenological features, focusing on one-loop contributions to fermion electric dipole moments.Comment: 1+7 pages Revtex 3 figures incoporated; talk at NANP'0

    Helical Structures in Vertically Aligned Dust Particle Chains in a Complex Plasma

    Full text link
    Self-assembly of structures from vertically aligned, charged dust particle bundles within a glass box placed on the lower, powered electrode of a RF GEC cell were produced and examined experimentally. Self-organized formation of one-dimensional vertical chains, two-dimensional zigzag structures and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from a one-dimensional chain structure, through a zigzag transition to a two-dimensional, spindle-like structure and then to various three-dimensional, helical structures exhibiting multiple symmetries. Stable configurations are found to be dependent upon the system confinement, (where are the horizontal and vertical dust resonance frequencies), the total number of particles within a bundle and the RF power. For clusters having fixed numbers of particles, the RF power at which structural transitions occur is repeatable and exhibits no observable hysteresis. The critical conditions for these structural transitions as well as the basic symmetry exhibited by the one-, two- and three-dimensional structures that subsequently develop are in good agreement with the theoretically predicted configurations of minimum energy determined employing molecular dynamics simulations for charged dust particles confined in a prolate, spheroidal potential as presented theoretically by Kamimura and Ishihara [10]

    Analytical theory for dark soliton interaction in nonlocal nonlinear materials with arbitrary degree of nonlocality

    Get PDF
    We investigate theoretically the interaction of dark solitons in materials with a spatially nonlocal nonlinearity. In particular we do this analytically and for arbitrary degree of nonlocality. We employ the variational technique to show that nonlocality induces an attractive force in the otherwise repulsive soliton interaction.Comment: submitted for publicatio

    Correlations and fluctuations of a confined electron gas

    Full text link
    The grand potential Ω\Omega and the response R=−∂Ω/∂xR = - \partial \Omega /\partial x of a phase-coherent confined noninteracting electron gas depend sensitively on chemical potential μ\mu or external parameter xx. We compute their autocorrelation as a function of μ\mu, xx and temperature. The result is related to the short-time dynamics of the corresponding classical system, implying in general the absence of a universal regime. Chaotic, diffusive and integrable motions are investigated, and illustrated numerically. The autocorrelation of the persistent current of a disordered mesoscopic ring is also computed.Comment: 12 pages, 1 figure, to appear in Phys. Rev.

    Long-term influence of physical aging processes in epoxy matrix composites

    Get PDF
    Selected mechanical properties of (plus or minus 45 degree sub 4s) graphite/epoxy composites were found to be affected by sub T sub g annealing. Postcured specimens of Thornel 300 graphite/Narmco 5208 epoxy were sub T sub G annealed at 413 K (140 C) for ca. 10 to the first through 10 to the fifth powers min., with a prior quenching from above T sub g. The ultimate tensile strength, strain-to-break, and toughness of the composite were found to decrease as a function of sub T sub g annealing time. The time-dependent change in properties can be explained on the basis of physical aging which is related to free volume changes in the non-equilibrium glassy state of network epoxies. The results imply possible changes in composite properties with service time

    Physical aging in graphite epoxy composites

    Get PDF
    The matrix dominated mechanical behavior of a graphite epoxy composite was found to be affected by sub Tg annealing. Postcured + or - 45 deg 4S specimens of Thornel 300 graphite/Narmco 5208 epoxy were quenched from above Tg and given a sub Tg annealing at 140 C for times up to 10 to the 5th power min. The ultimate tensile strength, strain to break, and toughness of the composite material were found to decrease as functions of sub Tg annealing time. No weight loss was observed during the sub Tg annealing. The time dependent change in mechanical behavior is explained on the basis of free volume changes that are related to the physical aging of the nonequilibrium glassy network epoxy. The results imply possible changes in composite properties with service time
    • …
    corecore