26 research outputs found

    Corynebacterium ulcerans 0102 carries the gene encoding diphtheria toxin on a prophage different from the C. diphtheriae NCTC 13129 prophage

    Get PDF
    BACKGROUND: Corynebacterium ulcerans can cause a diphtheria-like illness, especially when the bacterium is lysogenized with a tox gene-carrying bacteriophage that produces diphtheria toxin. Acquisition of toxigenicity upon phage lysogenization is a common feature of C. ulcerans and C. diphtheriae. However, because of a lack of C. ulcerans genome information, a detailed comparison of prophages has not been possible between these two clinically important and closely related bacterial species. RESULTS: We determined the whole genome sequence of the toxigenic C. ulcerans 0102 isolated in Japan. The genomic sequence showed a striking similarity with that of Corynebacterium pseudotuberculosis and, to a lesser extent, with that of C. diphtheriae. The 0102 genome contained three distinct prophages. One of these, ΦCULC0102-I, was a tox-positive prophage containing genes in the same structural order as for tox-positive C. diphtheriae prophages. However, the primary structures of the individual genes involved in the phage machinery showed little homology between the two counterparts. CONCLUSION: Taken together, these results suggest that the tox-positive prophage in this strain of C. ulcerans has a distinct origin from that of C. diphtheriae NCTC 13129

    Clinical implications of determination of safe surgical margins by using a combination of CT and 18FDG-positron emission tomography in soft tissue sarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine safe surgical margins for soft tissue sarcoma, it is essential to perform a general evaluation of the extent of tumor, responses to auxiliary therapy, and other factors preoperatively using multiple types of diagnostic imaging. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) is a tool for diagnostic imaging that has recently spread rapidly in clinical use. At present, the roles played by FDG-PET/CT in determination of margins for surgical resection of sarcoma are unclear. The present study was undertaken to explore the roles of FDG-PET/CT in determination of surgical margins for soft tissue sarcoma and to examine whether PET can serve as a standard means for setting the margins of surgical resection during reduced surgery.</p> <p>Methods</p> <p>The study involved 7 patients with sarcoma who underwent surgery in our department and in whom evaluation with FDG-PET/CT was possible. Sarcoma was histologically rated as MFH in 6 cases and leiomyosarcoma in 1 case. In all cases, sarcoma was superficial (T1a or T2a). The tumor border was defined by contrast-enhanced MRI, and SUVs were measured at intervals of 1 cm over a 5-cm long area from the tumor border. Mapping of viable tumor cells was carried out on whole-mount sections of resected tissue, and SUVs were compared with histopathological findings.</p> <p>Results</p> <p>Preoperative maximum SUVs (SUV-max) of the tumor averaged 11.7 (range: 3.8-22.1). Mean SUV-max was 2.2 (range: 0.3-3.8) at 1 cm from the tumor border, 1.1 (0.85-1.47) at 2 cm, 0.83 (0.65-1.15) at 3 cm, 0.7 (0.42-0.95) at 4 cm, and 0.64 (0.45-0.82) at 5 cm. When resected tissue was mapped, tumor cells were absent in the areas where SUV-max was below 1.0.</p> <p>Conclusions</p> <p>Our findings suggest that a safe surgical margin free of viable tumor cells can be ensured if the SUV cut-off level is set at 1.0. FDG-PET/CT is promising as a diagnostic imaging technique for setting of safe minimal margins for surgical resection of soft tissue sarcoma.</p

    Relationship of body mass index to percent body fat and waist circumference among schoolchildren in Japan - the influence of gender and obesity: a population-based cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the correlation coefficient between body mass index (BMI) and percent body fat (%BF) or waist circumference (WC) has been reported, studies conducted among population-based schoolchildren to date have been limited in Japan, where %BF and WC are not usually measured in annual health examinations at elementary schools or junior high schools. The aim of the present study was to investigate the relationship of BMI to %BF and WC and to examine the influence of gender and obesity on these relationships among Japanese schoolchildren.</p> <p>Methods</p> <p>Subjects included 3,750 schoolchildren from the fourth and seventh grade in Ina-town, Saitama Prefecture, Japan between 2004 and 2008. Information about subject's age, sex, height, weight, %BF, and WC was collected from annual physical examinations. %BF was measured with a bipedal biometrical impedance analysis device. Obesity was defined by the following two criteria: the obese definition of the Centers for Disease Control and Prevention, and the definition of obesity for Japanese children. Pearson's correlation coefficients between BMI and %BF or WC were calculated separately for sex.</p> <p>Results</p> <p>Among fourth graders, the correlation coefficients between BMI and %BF were 0.74 for boys and 0.97 for girls, whereas those between BMI and WC were 0.94 for boys and 0.90 for girls. Similar results were observed in the analysis of seventh graders. The correlation coefficient between BMI and %BF varied by physique (obese or non-obese), with weaker correlations among the obese regardless of the definition of obesity; most correlation coefficients among obese boys were less than 0.5, whereas most correlations among obese girls were more than 0.7. On the other hand, the correlation coefficients between BMI and WC were more than 0.8 among boys and almost all coefficients were more than 0.7 among girls, regardless of physique.</p> <p>Conclusions</p> <p>BMI was positively correlated with %BF and WC among Japanese schoolchildren. The correlations could be influenced by obesity as well as by gender. Accordingly, it is essential to consider gender and obesity when using BMI as a surrogate for %BF and WC for epidemiological use.</p

    CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums

    Get PDF
    Chrysanthemum is a typical short-day (SD) plant that responds to shortening daylength during the transition from the vegetative to the reproductive phase. FLOWERING LOCUS T (FT)/Heading date 3a (Hd3a) plays a pivotal role in the induction of phase transition and is proposed to encode a florigen. Three FT-like genes were isolated from Chrysanthemum seticuspe (Maxim.) Hand.-Mazz. f. boreale (Makino) H. Ohashi & Yonek, a wild diploid chrysanthemum: CsFTL1, CsFTL2, and CsFTL3. The organ-specific expression patterns of the three genes were similar: they were all expressed mainly in the leaves. However, their response to daylength differed in that under SD (floral-inductive) conditions, the expression of CsFTL1 and CsFTL2 was down-regulated, whereas that of CsFTL3 was up-regulated. CsFTL3 had the potential to induce early flowering since its overexpression in chrysanthemum could induce flowering under non-inductive conditions. CsFTL3-dependent graft-transmissible signals partially substituted for SD stimuli in chrysanthemum. The CsFTL3 expression levels in the two C. seticuspe accessions that differed in their critical daylengths for flowering closely coincided with the flowering response. The CsFTL3 expression levels in the leaves were higher under floral-inductive photoperiods than under non-inductive conditions in both the accessions, with the induction of floral integrator and/or floral meristem identity genes occurring in the shoot apexes. Taken together, these results indicate that the gene product of CsFTL3 is a key regulator of photoperiodic flowering in chrysanthemums

    Genome Organization and Pathogenicity of Corynebacterium diphtheriae C7(−) and PW8 Strains ▿ †

    No full text
    Corynebacterium diphtheriae is the causative agent of diphtheria. In 2003, the complete genomic nucleotide sequence of an isolate (NCTC13129) from a large outbreak in the former Soviet Union was published, in which the presence of 13 putative pathogenicity islands (PAIs) was demonstrated. In contrast, earlier work on diphtheria mainly employed the C7(−) strain for genetic analysis; therefore, current knowledge of the molecular genetics of the bacterium is limited to that strain. However, genomic information on the NCTC13129 strain has scarcely been compared to strain C7(−). Another important C. diphtheriae strain is Park-Williams no. 8 (PW8), which has been the only major strain used in toxoid vaccine production and for which genomic information also is not available. Here, we show by comparative genomic hybridization that at least 37 regions from the reference genome, including 11 of the 13 PAIs, are considered to be absent in the C7(−) genome. Despite this, the C7(−) strain still retained signs of pathogenicity, showing a degree of adhesion to Detroit 562 cells, as well as the formation of and persistence in abscesses in animal skin comparable to that of the NCTC13129 strain. In contrast, the PW8 strain, suggested to lack 14 genomic regions, including 3 PAIs, exhibited more reduced signs of pathogenicity. These results, together with great diversity in the presence of the 37 genomic regions among various C. diphtheriae strains shown by PCR analyses, suggest great heterogeneity of this pathogen, not only in genome organization, but also in pathogenicity
    corecore