3,516 research outputs found

    Relativistic stars with purely toroidal magnetic fields

    Full text link
    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The master equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these master equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows ; (1) For the non-rotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass-shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.Comment: 13 figures, 7 tables, submitted to PR

    Toda Lattice Solutions of Differential-Difference Equations for Dissipative Systems

    Full text link
    In a certain class of differential-difference equations for dissipative systems, we show that hyperbolic tangent model is the only the nonlinear system of equations which can admit some particular solutions of the Toda lattice. We give one parameter family of exact solutions, which include as special cases the Toda lattice solutions as well as the Whitham's solutions in the Newell's model. Our solutions can be used to describe temporal-spatial density patterns observed in the optimal velocity model for traffic flow.Comment: Latex, 13 pages, 1 figur

    Representation of nonequilibrium steady states in large mechanical systems

    Get PDF
    Recently a novel concise representation of the probability distribution of heat conducting nonequilibrium steady states was derived. The representation is valid to the second order in the ``degree of nonequilibrium'', and has a very suggestive form where the effective Hamiltonian is determined by the excess entropy production. Here we extend the representation to a wide class of nonequilibrium steady states realized in classical mechanical systems where baths (reservoirs) are also defined in terms of deterministic mechanics. The present extension covers such nonequilibrium steady states with a heat conduction, with particle flow (maintained either by external field or by particle reservoirs), and under an oscillating external field. We also simplify the derivation and discuss the corresponding representation to the full order.Comment: 27 pages, 3 figure

    Testing models of inflation with CMB non-gaussianity

    Full text link
    Two different predictions for the primordial curvature fluctuation bispectrum are compared through their effects on the Cosmic Microwave Background temperature fluctuations. The first has a local form described by a single parameter f_{NL}. The second is based on a prediction from the warm inflationary scenario, with a different dependence on wavenumber and a parameter f_{WI}. New expressions are obtained for the angular bispectra of the temperature fluctuations and for the estimators used to determine fNLf_{NL} and f_{WI}. The standard deviation of the estimators in an ideal experiment is roughly 5 times larger for f_{WI} than for f_{NL}. Using 3 year WMAP data gives limits -375<f_{WI}<36.8, but there is a possibility of detecting a signal for f_{WI} from the Planck satellite.Comment: 13 pages, 5 figures in ReVTe

    Evolution of Second-Order Cosmological Perturbations and Non-Gaussianity

    Get PDF
    We present a second-order gauge-invariant formalism to study the evolution of curvature perturbations in a Friedmann-Robertson-Walker universe filled by multiple interacting fluids. We apply such a general formalism to describe the evolution of the second-order curvature perturbations in the standard one-single field inflation, in the curvaton and in the inhomogeneous reheating scenarios for the generation of the cosmological perturbations. Moreover, we provide the exact expression for the second-order temperature anisotropies on large scales, including second-order gravitational effects and extend the well-known formula for the Sachs-Wolfe effect at linear order. Our findings clarify what is the exact non-linearity parameter f_NL entering in the determination of higher-order statistics such as the bispectrum of Cosmic Microwave Background temperature anisotropies. Finally, we compute the level of non-Gaussianity in each scenario for the creation of cosmological perturbations.Comment: 14 pages, LaTeX file. Further comments adde

    Spin Liquid State in an Organic Mott Insulator with Triangular Lattice

    Get PDF
    1^{1}H NMR and static susceptibility measurements have been performed in an organic Mott insulator with nearly isotropic triangular lattice, κ\kappa-(BEDT-TTF)2_{2}Cu2_{2}(CN)3_{3}, which is a model system of frustrated quantum spins. The static susceptibility is described by the spin SS = 1/2 antiferromagnetic triangular-lattice Heisenberg model with the exchange constant JJ \sim 250 K. Regardless of the large magnetic interactions, the 1^{1}H NMR spectra show no indication of long-range magnetic ordering down to 32 mK, which is four-orders of magnitude smaller than JJ. These results suggest that a quantum spin liquid state is realized in the close proximity of the superconducting state appearing under pressure.Comment: 4 pages, 4 figure

    High-resolution tracking in a GEM-Emulsion detector

    Full text link
    SHiP (Search for Hidden Particles) is a beam dump experiment proposed at the CERN SPS aiming at the observation of long lived particles very weakly coupled with ordinary matter mostly produced in the decay of charmed hadrons. The beam dump facility of SHiP is also a copious factory of neutrinos of all three kinds and therefore a dedicated neutrino detector is foreseen in the SHiP apparatus. The neutrino detector exploits the Emulsion Cloud Chamber technique with a modular structure, alternating walls of target units and planes of electronic detectors providing the time stamp to the event. GEM detectors are one of the possible choices for this task. This paper reports the results of the first exposure to a muon beam at CERN of a new hybrid chamber, obtained by coupling a GEM chamber and an emulsion detector. Thanks to the micrometric accuracy of the emulsion detector, the position resolution of the GEM chamber as a function of the particle inclination was evaluated in two configurations, with and without the magnetic fiel
    corecore