28 research outputs found

    COVID-19:immunopathology, pathophysiological mechanisms, and treatment options

    Get PDF
    Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to spread globally despite the worldwide implementation of preventive measures to combat the disease. Although most COVID-19 cases are characterised by a mild, self-limiting disease course, a considerable subset of patients develop a more severe condition, varying from pneumonia and acute respiratory distress syndrome (ARDS) to multi-organ failure (MOF). Progression of COVID-19 is thought to occur as a result of a complex interplay between multiple pathophysiological mechanisms, all of which may orchestrate SARS-CoV-2 infection and contribute to organ-specific tissue damage. In this respect, dissecting currently available knowledge of COVID-19 immunopathogenesis is crucially important, not only to improve our understanding of its pathophysiology but also to fuel the rationale of both novel and repurposed treatment modalities. Various immune-mediated pathways during SARS-CoV-2 infection are relevant in this context, which relate to innate immunity, adaptive immunity, and autoimmunity. Pathological findings in tissue specimens of patients with COVID-19 provide valuable information with regard to our understanding of pathophysiology as well as the development of evidence-based treatment regimens. This review provides an updated overview of the main pathological changes observed in COVID-19 within the most commonly affected organ systems, with special emphasis on immunopathology. Current management strategies for COVID-19 include supportive care and the use of repurposed or symptomatic drugs, such as dexamethasone, remdesivir, and anticoagulants. Ultimately, prevention is key to combat COVID-19, and this requires appropriate measures to attenuate its spread and, above all, the development and implementation of effective vaccines.</p

    Epidermal Basement Membrane Substitutes for Bioengineering of Human Epidermal Equivalents.

    No full text
    Epidermal basement membrane, a tightly packed network of extracellular matrix (ECM) components, is a source of physical, chemical, and biological factors required for the structural and functional homeostasis of the epidermis. Variations within the ECM create distinct environments, which can affect the property of cells in the basal layer of the epidermis and subsequently affect keratinocyte differentiation and stratification. Very little attention has been paid to mimicking basement membrane in organotypic cultures. In this study, using parameters outlined in a consensus on the quality standard of organotypic models suitable for dermatological research, we have evaluated three basement membrane substitutes. We compared fibronectin with three complex three-dimensional matrices: Matrigel, decellularized dermal fibroblast‒produced and ‒assembled ECM, and a dry human amniotic membrane. Our results suggest that Matrigel is not a suitable substrate for human epidermal equivalent culture, whereas the two other complex three-dimensional substitutes, decellularized dermal fibroblast‒produced and ‒assembled ECM and dry human amniotic membrane, were superior to single layer fibronectin coating. Human epidermal equivalents cultured on either decellularized dermal fibroblast‒produced and ‒assembled ECM or on dry human amniotic membrane generated hemidesmosomes, whereas those on fibronectin did not. In addition, human epidermal equivalent cultured on decellularized dermal fibroblast‒produced and ‒assembled ECM and on dry human amniotic membrane can be maintained in culture 4 days longer than human epidermal equivalent cultured on fibronectin without compromising the barrier function

    Prospects for the Use of Induced Pluripotent Stem Cells (iPSC) in Animal Conservation and Environmental Protection

    No full text
    Summary Stem cells are unique cell populations able to copy themselves exactly as well as specialize into new cell types. Stem cells isolated from early stages of embryo development are pluripotent, i.e., can be differentiated into multiple different cell types. In addition, scientists have found a way of reverting specialized cells from an adult into an embryonic‐like state. These cells, that are as effective as cells isolated from early embryos, are termed induced pluripotent stem cells (iPSCs). The potency of iPSC technology is recently being employed by researchers aimed at helping wildlife and environmental conservation efforts. Ambitious attempts using iPSCs are being made to preserve endangered animals as well as reanimate extinct species, merging science fiction with reality. Other research to sustain natural resources and promote animal welfare are exploring iPSCs for laboratory grown animal products without harm to animals offering unorthodox options for creating meat, leather, and fur. There is great potential in iPSC technology and what can be achieved in consumerism, animal welfare, and environmental protection and conservation. Here, we discuss current research in the field of iPSCs and how these research groups are attempting to achieve their goals. Stem Cells Translational Medicine 2019;8:7–1
    corecore