66 research outputs found

    The IIASA Energy Access Tool (Energy-ENACT)

    Get PDF
    Researchers from the Energy Program at the International Institute for Applied Systems Analysis (IIASA), building on work carried out within the framework of the Global Energy Assessment (GEA), have developed an interactive web-based scenario analysis tool that permits assessment of different policies for achieving universal access to modern energy by 2030. This software, known as the IIASA Energy-ENACT tool, is designed to assist national and regional policy makers and analysts in their strategic policy planning processes. The tool extends work undertaken for the GEA and, as such, is built on an extensive set of energy access scenarios to visualise costs and benefits of specific policy choices and their impacts. This document serves as an introduction to the Energy-ENACT tool and as a brief manual for the typical user

    The IIASA Energy-Multi Criteria Analysis Tool (ENE-MCA)

    Get PDF
    Researchers at the International Institute for Applied Systems Analysis (IIASA), building on work carried out within the framework of the Global Energy Assessment (GEA), have developed an interactive web-based scenario analysis tool that permits the concurrent assessment of synergies and trade-offs between multiple energy objectives at the global scale. This software, known as the IIASA Energy-Multi Criteria Analysis Policy Tool (ENE-MCA), is designed to assist national policy makers in their strategic policy planning processes. The tool extends work undertaken for the GEA and, as such, is built on the extensive set of global energy and environmental scenarios that have been generated as part of the GEA process. This document serves as an introduction to the ENE-MCA tool and as a brief manual for the typical user

    Relationship of Blood Lactate and Sweat Lactate on Exercise Intensity

    Get PDF
    Typical procedures for measuring blood lactate involve either finger stick blood samples or venous blood draws. The literature is equivocal regarding whether sweat lactate values change with exercise intensity. Recently, wearable technology devices have been developed to measure sweat lactate. Purpose: To examine the relationship between sweat lactate and blood lactate values during incremental exercise. Methods: This study consisted of 12 (8 male, 4 female) healthy recreationally active individuals (VO2peak 35.5 ± 7.6 ml/kg/min) between the ages of 18 and 25 (22 ± 2 yrs) who volunteered for the study. Participants performed an exercise test on a cycle ergometer to volitional fatigue to determine blood lactate, lactate threshold, VO2peak, and peak heart rate (HR). Blood lactate was collected via finger stick at each 3-min stage of exercise. Participants performed a subsequent exercise session at 40, 60, and 80% heart rate reserve (HRR). During the 20-min stages of this test, blood and sweat lactate were collected during each intensity level. Sweat lactate was collected in a sweat “pouch” at each state of exercise. Sweat lactate samples were analyzed via the lactate oxidase method on a Chemwell 2910 chemistry analyzer. Blood lactate samples were analyzed using a Lactate Plus analyzer. Whole body sweat rate was calculated from pre- and post-exercise body weight at each intensity, factoring in water consumed and urine voided. Results: Sweat rate increased with increasing intensity (40%: 9.66 ± 7.58; 60%: 18.10 ± 12.51; 80% 24.32 ± 15.44 ml/min). Sweat lactate significantly differed between 60 and 80% intensities (15.66 ± 5.73, 12.52 ± 4.44 mmol/L, respectively), P = 0.03. Blood lactate levels at 40, 60, and 80% intensities were 2.67 ± 1.15, 3.60 ± 1.90, and 4.83 ± 1.52, respectively (P \u3c 0.001). CONCLUSION: These findings agree with Buono, Lee, & Miller, 2010 who found sweat lactate decreases as sweat rate increases. It is likely that sweat lactate decreases with increasing exercise intensity due to dilution as sweat rate increases. From this data, it appears that sweat lactate does not demonstrate a relationship with blood lactate that warrants replacing blood lactate in exercise testing with sweat lactate. This may be due to the lactate in sweat originating from eccrine glands and thus is not reflective of muscle metabolism

    Estimation of total collagen volume: a T1 mapping versus histological comparison study in healthy Landrace pigs

    Get PDF
    Right ventricular biopsy represents the gold standard for the assessment of myocardial fibrosis and collagen content. This invasive technique, however, is accompanied by perioperative complications and poor reproducibility. Extracellular volume (ECV) measured through cardiovascular magnetic resonance (CMR) has emerged as a valid surrogate method to assess fibrosis non-invasively. Nonetheless, ECV provides an overestimation of collagen concentration since it also considers interstitial space. Our study aims to investigate the feasibility of estimating total collagen volume (TCV) through CMR by comparing it with the TCV measured at histology. Seven healthy Landrace pigs were acutely instrumented closed-chest and transported to the MRI facility for measurements. For each protocol, CMR imaging at 3T was acquired. MEDIS software was used to analyze T1 mapping and ECV for both the left ventricular myocardium (LVmyo) and left ventricular septum (LVseptum). ECV was then used to estimate TCVCMR at LVmyo and LVseptum following previously published formulas. Tissues were prepared following an established protocol and stained with picrosirius red to analyze the TCVhisto in LVmyo and LVseptum. TCV measured at LVmyo and LVseptum with both histology (8 ± 5 ml and 7 ± 3 ml, respectively) and T1-Mapping (9 ± 5 ml and 8 ± 6 ml, respectively) did not show any regional differences. TCVhisto and TCVCMR showed a good level of data agreement by Bland–Altman analysis. Estimation of TCV through CMR may be a promising way to non-invasively assess myocardial collagen content and may be useful to track disease progression or treatment response

    Cardiovascular magnetic resonance feature tracking in pigs: a reproducibility and sample size calculation study

    Get PDF
    Cardiovascular magnetic resonance feature tracking (CMR-FT) is a novel technique for non-invasive assessment of myocardial motion and deformation. Although CMR-FT is standardized in humans, literature on comparative analysis from animal models is scarce. In this study, we measured the reproducibility of global strain under various inotropic states and the sample size needed to test its relative changes in pigs. Ten anesthetized healthy Landrace pigs were investigated. After baseline (BL), two further steps were performed: (I) dobutamine-induced hyper-contractility (Dob) and (II) verapamil-induced hypocontractility (Ver). Global longitudinal (GLS), circumferential (GCS) and radial strain (GRS) were assessed. This study shows a good to excellent inter- and intra-observer reproducibility of CMR-FT in pigs under various inotropic states. The highest inter-observer reproducibility was observed for GLS at both BL (ICC 0.88) and Ver (ICC 0.79). According to the sample size calculation for GLS, a small number of animals could be used for future trials

    MESSAGEix-GLOBIOM Documentation - 2020 release

    Get PDF
    These webpages document the IIASA Integrated Assessment Modeling (IAM) framework, also referred to as MESSAGEix-GLOBIOM. MESSAGEix-GLOBIOM is a global model, covering 11 world regions and was originally developed for the quantification of the so-called Shared Socio-economic Pathways (SSPs). The documentation includes information on the spatial and temporal structure of the model, the socio-economic drivers, the energy supply and demand sector representation, the agriculture, forest and other land-use component, and the macro-economic and climate modules. It also links to the underlying MESSAGEix mathematical modeling framework which includes information on the equations governing the model dynamics
    • …
    corecore