2,296 research outputs found
Radon mitigation during the installation of the CUORE decay detector
CUORE - the Cryogenic Underground Observatory for Rare Events - is an
experiment searching for the neutrinoless double-beta () decay
of Te with an array of 988 TeO crystals operated as bolometers at
10 mK in a large dilution refrigerator. With this detector, we aim for a
Te decay half-life sensitivity of y
with 5 y of live time, and a background index of
counts/keV/kg/y. Making an effort to maintain radiopurity by minimizing the
bolometers' exposure to radon gas during their installation in the cryostat, we
perform all operations inside a dedicated cleanroom environment with a
controlled radon-reduced atmosphere. In this paper, we discuss the design and
performance of the CUORE Radon Abatement System and cleanroom, as well as a
system to monitor the radon level in real time.Comment: 10 pages, 6 figures, 1 tabl
White Paper: Measuring the Neutrino Mass Hierarchy
This white paper is a condensation of a report by a committee appointed
jointly by the Nuclear Science and Physics Divisions at Lawrence Berkeley
National Laboratory (LBNL). The goal of this study was to identify the most
promising technique(s) for resolving the neutrino mass hierarchy. For the most
part, we have relied on calculations and simulations presented by the
proponents of the various experiments. We have included evaluations of the
opportunities and challenges for these experiments based on what is available
already in the literature.Comment: White paper prepared for Snowmass-201
Controlling of Iridium films using interfacial proximity effects
High precision calorimetry using superconducting transition edge sensors
requires the use of superconducting films with a suitable , depending on
the application. To advance high-precision macrocalorimetry, we require
low- films that are easy to fabricate. A simple and effective way to
suppress of superconducting Iridium through the proximity effect is
demonstrated by using Ir/Pt bilayers as well as Au/Ir/Au trilayers. While Ir/Au
films fabricated by applying heat to the substrate during Ir deposition have
been used in the past for superconducting sensors, we present results of
suppression on Iridium by deposition at room temperature in Au/Ir/Au trilayers
and Ir/Pt bilayers in the range of 20-100~mK. Measurements of the
relative impedance between the Ir/Pt bilayers and Au/Ir/Au trilayers fabricated
show factor of 10 higher values in the Ir/Pt case. These new films could
play a key role in the development of scalable superconducting transition edge
sensors that require low- films to minimize heat capacity and maximize
energy resolution, while keeping high-yield fabrication methods.Comment: 5 journal pages, 4 figure
Improving the performance of cryogenic calorimeters with nonlinear multivariate noise cancellation algorithms
State-of-the-art physics experiments require high-resolution, low-noise, and low-threshold detectors to achieve competitive scientific results. However, experimental environments invariably introduce sources of noise, such as electrical interference or microphonics. The sources of this environmental noise can often be monitored by adding specially designed “auxiliary devices” (e.g. microphones, accelerometers, seismometers, magnetometers, and antennae). A model can then be constructed to predict the detector noise based on the auxiliary device information, which can then be subtracted from the true detector signal. Here, we present a multivariate noise cancellation algorithm which can be used in a variety of settings to improve the performance of detectors using multiple auxiliary devices. To validate this approach, we apply it to simulated data to remove noise due to electromagnetic interference and microphonic vibrations. We then employ the algorithm to a cryogenic light detector in the laboratory and show an improvement in the detector performance. Finally, we motivate the use of nonlinear terms to better model vibrational contributions to the noise in thermal detectors. We show a further improvement in the performance of a particular channel of the CUORE detector when using the nonlinear algorithm in combination with optimal filtering techniques
Controlling of Iridium Films Using the Proximity Effect
A superconducting Transition-Edge Sensor (TES) with low- is essential in
a high resolution calorimetric detection. With a motivation of developing
sensitive calorimeters for applications in cryogenic neutrinoless double beta
decay searches, we have been investigating methods to reduce the of an Ir
film down to 20 mK. Utilizing the proximity effect between a superconductor and
a normal metal, we found two room temperature fabrication recipes of making
Ir-based low- films. In the first approach, an Ir film sandwiched between
two Au films, a Au/Ir/Au trilayer, has a tunable in the range of 20-100
mK depending on the relative thicknesses. In the second approach, a
paramagnetic Pt thin film is used to create Ir/Pt bilayer with a tunable
in the same range. We present detailed study of fabrication and
characterization of Ir-based low- films, and compare the experimental
results to theoretical models. We show that Ir-based films with predictable and
reproducible critical temperature can be consistently fabricated for use in
large scale detector applications.Comment: 5 figures, accepted in the Journal of Applied Physic
Precision Measurement of the Weak Mixing Angle in Moller Scattering
We report on a precision measurement of the parity-violating asymmetry in
fixed target electron-electron (Moller) scattering: A_PV = -131 +/- 14 (stat.)
+/- 10 (syst.) parts per billion, leading to the determination of the weak
mixing angle \sin^2\theta_W^eff = 0.2397 +/- 0.0010 (stat.) +/- 0.0008 (syst.),
evaluated at Q^2 = 0.026 GeV^2. Combining this result with the measurements of
\sin^2\theta_W^eff at the Z^0 pole, the running of the weak mixing angle is
observed with over 6 sigma significance. The measurement sets constraints on
new physics effects at the TeV scale.Comment: 4 pages, 2 postscript figues, submitted to Physical Review Letter
Observation of Parity Nonconservation in Moller Scattering
We report a measurement of the parity-violating asymmetry in fixed target
electron-electron (Moller) scattering: A_PV = -175 +/- 30 (stat.) +/- 20
(syst.) parts per billion. This first direct observation of parity
nonconservation in Moller scattering leads to a measurement of the electron's
weak charge at low energy Q^e_W = -0.053 +/- 0.011. This is consistent with the
Standard Model expectation at the current level of precision:
sin^2\theta_W(M_Z)_MSbar = 0.2293 +/- 0.0024 (stat.) +/- 0.0016 (syst.) +/-
0.0006 (theory).Comment: Version 3 is the same as version 2. These versions contain minor text
changes from referee comments and a change in the extracted value of Q^e_W
and sin^2\theta_W due to a change in the theoretical calculation of the
bremsstrahulung correction (ref. 16
White paper: CeLAND - Investigation of the reactor antineutrino anomaly with an intense 144Ce-144Pr antineutrino source in KamLAND
We propose to test for short baseline neutrino oscillations, implied by the
recent reevaluation of the reactor antineutrino flux and by anomalous results
from the gallium solar neutrino detectors. The test will consist of producing a
75 kCi 144Ce - 144Pr antineutrino source to be deployed in the Kamioka Liquid
Scintillator Anti-Neutrino Detector (KamLAND). KamLAND's 13m diameter target
volume provides a suitable environment to measure energy and position
dependence of the detected neutrino flux. A characteristic oscillation pattern
would be visible for a baseline of about 10 m or less, providing a very clean
signal of neutrino disappearance into a yet-unknown, "sterile" state. Such a
measurement will be free of any reactor-related uncertainties. After 1.5 years
of data taking the Reactor Antineutrino Anomaly parameter space will be tested
at > 95% C.L.Comment: White paper prepared for Snowmass-2013; slightly different author
lis
- …