3 research outputs found

    Experimental investigation and modeling of diesel engine fuel spray

    Get PDF
    A model for spray penetration in diesel engines is suggested. It is based on momentum conservation for a realistic mass flow rate transient profile. The modelling approach is based on tracking of centre-of-fuel-mass (COFM) of injected diesel fuel. The model was validated for Bosch and Delphi injectors using the data obtained at Sir Harry Ricardo automotive centre, University of Brighton, UK. The model is shown to produce a good agreement with the experimental data until major spray instability (such as cluster shedding). It has been found that the dispersion time (the adjustable model parameter) is increasing when injection pressure is decreasing. This follows the known tendency for spray breakup time

    КоноплянС Π±Ρ–ΠΎΠΏΠ°Π»ΠΈΠ²ΠΎ для автотранспорту. Π£ΠΊΡ€Π°Ρ—Π½ΡΡŒΠΊΠ° пСрспСктива

    No full text
    Ukraine takes a fourth place in the world in the technical hemp production and can use waste ofΒ hemp for biofuel (including biodiesel) production. This paper presents an analysis of cetane numbersand low-temperature properties of hemp biodiesels as well as spray and evaporation of these fuels. TwoΒ types of hemp biodiesel fuels are analyzed: Hemp Methyl esters, produced from hemp oil in Ukraine(HM1) and European Union (HM2). It was found that hemp biodiesel has smaller cetane number thanΒ traditional rapeseed or soy biodiesel. At the same time hemp biodiesel shows better low-temperatureproperties compared with traditional biodiesels. So, it was recommended to use the mixture of rapeseedΒ or soy biodiesel with hemp biodiesel to optimise both the low-temperature properties and cetane numberΒ of fuel. According to modelling the spray parameters of hemp biodiesel are very close to those of soyΒ biodiesel. Evaporation of hemp biodiesel is very close to soy biodiesel according to previous research.Β Therefore, mixture of soy/rapeseed and hemp biodiesels can be recommended for experimentalΒ investigation as a future fuel for Ukrainian market.Π£ΠΊΡ€Π°Ρ—Π½Π° посідає Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚Π΅ місцС Π² світі Ρƒ Π²ΠΈΡ€ΠΎΡ‰ΡƒΠ²Π°Π½Π½Ρ– Ρ‚Π΅Ρ…Π½Ρ–Ρ‡Π½ΠΎΡ— ΠΊΠΎΠ½ΠΎΠΏΠ»Ρ–; Π²Ρ–Π΄Ρ…ΠΎΠ΄ΠΈ Π²Ρ–Π΄ ΠΏΠ΅Ρ€Π΅Ρ€ΠΎΠ±ΠΊΠΈΒ  ΠΌΠΎΠΆΠ½Π° використовувати для Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π²Π° Π±Ρ–ΠΎΠΏΠ°Π»ΠΈΠ²Π° (Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‡ΠΈ Π±Ρ–ΠΎΠ΄ΠΈΠ·Π΅Π»ΡŒΠ½Π΅ ΠΏΠ°Π»ΠΈΠ²ΠΎ). Π£ статті прСдставлСнС модСлювання Ρ†Π΅Ρ‚Π°Π½ΠΎΠ²ΠΈΡ… чисСл, Π½ΠΈΠ·ΡŒΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΈΡ… властивостСй Ρ‚Π° Π°Π½Π°Π»Ρ–Π· розпилСння Π±Ρ–ΠΎΠ΄ΠΈΠ·Π΅Π»ΡŒΠ½ΠΈΡ… ΠΏΠ°Π»ΠΈΠ² Π½Π° основі ΠΊΠΎΠ½ΠΎΠΏΠ»Ρ–. Розглядалися Π΄Π²Π° Π²ΠΈΠ΄ΠΈ Π±Ρ–ΠΎΠ΄ΠΈΠ·Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ°Π»ΠΈΠ²Π°: ΠΌΠ΅Ρ‚ΠΈΠ»ΠΎΠ²Ρ– Π΅Ρ„Ρ–Ρ€ΠΈ конопляної ΠΎΠ»Ρ–Ρ—, Ρ‰ΠΎ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π· конопляної ΠΎΠ»Ρ–Ρ— Π² Π£ΠΊΡ€Π°Ρ—Π½Ρ– (HM1) Ρ– Π„Π²Ρ€ΠΎΠΏΠ΅ΠΉΡΡŒΠΊΠΎΠ³ΠΎ Π‘ΠΎΡŽΠ·Ρƒ (HM2). Π‘ΡƒΠ»ΠΎ встановлСно, Ρ‰ΠΎ конопляний Π±Ρ–ΠΎΠ΄ΠΈΠ·Π΅Π»ΡŒ ΠΌΠ°Ρ” мСншС Ρ†Π΅Ρ‚Π°Π½ΠΎΠ²Π΅ число, порівняно Π· Ρ‚Ρ€Π°Π΄ΠΈΡ†Ρ–ΠΉΠ½ΠΈΠΌ Ρ€Ρ–ΠΏΠ°ΠΊΠΎΠ²ΠΈΠΌ Π°Π±ΠΎ соєвим Π±Ρ–ΠΎΠ΄ΠΈΠ·Π΅Π»ΡŒΠ½ΠΈΠΌ ΠΏΠ°Π»ΠΈΠ²ΠΎΠΌ. Π£ Ρ‚ΠΎΠΉ ΠΆΠ΅ час, коноплянС Π±Ρ–ΠΎΠ΄ΠΈΠ·Π΅Π»ΡŒΠ½Π΅ ΠΏΠ°Π»ΠΈΠ²ΠΎ ΠΏΠΎΠΊΠ°Π·ΡƒΡ” ΠΊΡ€Π°Ρ‰Ρ– Π½ΠΈΠ·ΡŒΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ– властивості, порівняно Π· Ρ‚Ρ€Π°Π΄ΠΈΡ†Ρ–ΠΉΠ½ΠΈΠΌΠΈ Π±Ρ–ΠΎΠ΄ΠΈΠ·Π΅Π»Π΅ΠΌ. Π’Π°ΠΊΠΈΠΌ Ρ‡ΠΈΠ½ΠΎΠΌ, ΠΌΠΎΠΆΠ½Π° Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΠ²Π°Ρ‚ΠΈ використовувати ΡΡƒΠΌΡ–Ρˆ Ρ€Ρ–ΠΏΠ°ΠΊΠΎΠ²ΠΎΠ³ΠΎ/соєвого Ρ‚Π° конпляного Π±Ρ–ΠΎΠ΄ΠΈΠ·Π΅Π»ΡŒΠ½ΠΈΡ… ΠΏΠ°Π»ΠΈΠ² для ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ— Π½ΠΈΠ·ΡŒΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΈΡ… властивостСй Ρ‚Π° Ρ†Π΅Ρ‚Π°Π½ΠΎΠ²ΠΎΠ³ΠΎ числа ΠΏΠ°Π»ΠΈΠ²Π°. Властивості Π΄ΠΎ Ρ€ΠΎΠ·ΠΏΠΈΠ»ΡŽΠ²Π°Π½Π½Ρ, Ρ‰ΠΎ ΠΌΠ°Ρ” конопляний Π±Ρ–ΠΎΠ΄ΠΈΠ·Π΅Π»ΡŒ, Π΄ΡƒΠΆΠ΅ Π±Π»ΠΈΠ·ΡŒΠΊΡ– Π΄ΠΎ властивостСй соєвого Π±Ρ–ΠΎΠ΄ΠΈΠ·Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ°Π»ΠΈΠ²Π°, як ΠΏΠΎΠΊΠ°Π·ΡƒΡ” модСлювання Π·Π° ΠΎΡ€ΠΈΠ³Ρ–Π½Π°Π»ΡŒΠ½ΠΎΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΡŽ. Випаровування конопляного Π±Ρ–ΠΎΠ΄ΠΈΠ·Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ°Π»ΠΈΠ²Π° Ρ‚Π°ΠΊΠΎΠΆ Π΄ΡƒΠΆΠ΅ близькС Π΄ΠΎ соєвого Π±Ρ–ΠΎΠ΄ΠΈΠ·Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ°Π»ΠΈΠ²Π°, Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ Π΄ΠΎ ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½Ρ–Ρ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ. ΠžΡ‚ΠΆΠ΅, ΡΡƒΠΌΡ–Ρˆ Ρ‚Ρ€Π°Π΄ΠΈΡ†Ρ–ΠΉΠ½ΠΎΠ³ΠΎ соєвого/Ρ€Ρ–ΠΏΠ°ΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ‚Π° конопляного Π±Ρ–ΠΎΠ΄ΠΈΠ·Π΅Π»ΡŒΠ½ΠΈΡ… ΠΏΠ°Π»ΠΈΠ² ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π° для Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ як ΠΌΠ°ΠΉΠ±ΡƒΡ‚Π½ΡŒΠΎΠ³ΠΎ ΠΏΠ°Π»ΠΈΠ²Π° для ΡƒΠΊΡ€Π°Ρ—Π½ΡΡŒΠΊΠΎΠ³ΠΎ Ρ€ΠΈΠ½ΠΊΡƒ

    EXPERIMENTAL INVESTIGATION AND MODELLING OF DIESEL ENGINE FUEL SPRAY

    No full text
    A model for spray penetration in diesel engines is suggested. It is based on momentum conservation for a realistic mass flow rate transient profile. The modelling approach is based on tracking of centre-of-fuel-mass (COFM) of injected diesel fuel. The model was validated for Bosch and Delphi injectors using the data obtained at Sir Harry Ricardo automotive centre, University of Brighton, UK. The model is shown to produce a good agreement with the experimental data until major spray instability (such as cluster shedding). It has been found that the dispersion time (the adjustable model parameter) is increasing when injection pressure is decreasing. This follows the known tendency for spray breakup time
    corecore