22 research outputs found

    Bioimage informatics in STED super-resolution microscopy

    Get PDF
    Optical microscopy is living its renaissance. The diffraction limit, although still physically true, plays a minor role in the achievable resolution in far-field fluorescence microscopy. Super-resolution techniques enable fluorescence microscopy at nearly molecular resolution. Modern (super-resolution) microscopy methods rely strongly on software. Software tools are needed all the way from data acquisition, data storage, image reconstruction, restoration and alignment, to quantitative image analysis and image visualization. These tools play a key role in all aspects of microscopy today – and their importance in the coming years is certainly going to increase, when microscopy little-by-little transitions from single cells into more complex and even living model systems. In this thesis, a series of bioimage informatics software tools are introduced for STED super-resolution microscopy. Tomographic reconstruction software, coupled with a novel image acquisition method STED< is shown to enable axial (3D) super-resolution imaging in a standard 2D-STED microscope. Software tools are introduced for STED super-resolution correlative imaging with transmission electron microscopes or atomic force microscopes. A novel method for automatically ranking image quality within microscope image datasets is introduced, and it is utilized to for example select the best images in a STED microscope image dataset.Siirretty Doriast

    Depth and intensity of the sulfate-methane transition zone control sedimentary molybdenum and uranium sequestration in a eutrophic low-salinity setting

    Get PDF
    Molybdenum (Mo) and uranium (U) contents in sedimentary archives are often used to reconstruct past changes in seafloor oxygenation. However, their sequestration processes are as yet poorly constrained in low-salinity coastal waters, which often suffer from anthropogenic eutrophication but only mild oxygen depletion. Due to the consequent lack of robust long-term paleo-redox reconstructions in such settings often characterized by a shallow front of dissolved sulfide accumulation within the sediment pore waters, inadequate understanding of the long-term drivers behind oxygen loss impedes cost-effective mitigation of this environmental problem. Here, we investigate the mechanisms of Mo and U sequestration in an oxic, low-salinity coastal setting in the northern Baltic Sea where anthropogenic eutrophication over the 20th century has resulted in formation of a shallow sulfate-methane transition zone (SMTZ) in the sediment column of this brackish-water basin. Our results demonstrate remarkably similar patterns for authigenic Mo and U sequestration, whereby the depth and intensity of the SMTZ exerts a first-order control on their solid-phase uptake. Sequential extraction analysis suggests that a large part of the authigenic Mo pool is hosted by refractory Fe-S phases such as pyrite and nanoscale FeMoS4, implying that the Fe-sulfide pathway is the dominating process of authigenic Mo scavenging. However, we also observe a pool of extremely labile Mo deep within the SMTZ, which might record an intermediate phase in authigenic Mo sequestration and/or partial switch to the organic matter (OM) pathway at low dissolved Fe levels. Authigenic U resides in acid-extractable and refractory phases, likely reflecting uptake into poorly crystalline monomeric U(IV) and crystalline uraninite, respectively. Similarly to Mo, authigenic U uptake is active at two fronts within the SMTZ, paralleled by increases in dissolved sulfide levels, suggesting coupling between sulfide production and U reduction. Our results imply that both Mo and U could provide viable proxies for mild bottom water deoxygenation in these settings, through the indirect link between seafloor oxygen conditions and the depth of SMTZ. Of these, Mo appears to more robustly capture variations in seafloor oxygen levels due to the significantly higher share of the authigenic pool. However, temporal resolution of these proxies is limited by the vertical offset between seafloor and the zone of authigenic uptake, and the superimposed character of the signal at a given depth due to vertical migrations of the SMTZ. These results have important implications for the use of Mo and U as paleo-redox proxies in other low-salinity coastal settings exposed to eutrophication.Peer reviewe

    Terrestrial organic matter input drives sedimentary trace metal sequestration in a human-impacted boreal estuary

    Get PDF
    Coastal sediments play a fundamental role in processing anthropogenic trace metal inputs. Previous studies have shown that terrestrial organic matter (OM) is a significant vector for trace metal transport across the land-to-sea continuum, but little is known about the fate of land-derived metal-OM complexes in coastal sediments. Here, we use a comprehensive set of sediment pore water and solid-phase analyses to investigate how variations in terrestrial OM delivery since the 1950s have influenced trace metal accumulation and diagenesis in a human-impacted boreal estuary in the northern Baltic Sea. A key feature of our dataset is a strong correlation between terrestrial OM deposition and accumulation of metal-OM complexes in the sediments. Based on this strong coupling, we infer that the riverine input of terrestrial metal-OM complexes from the hinterland, followed by flocculation-induced settling in the estuary, effectively modulates sedimentary trace metal sequestration. While part of the trace metal pool associated with these complexes is efficiently recycled in the surface sediments during diagenesis, a substantial fraction is permanently buried as refractory metal-OM complexes or through incorporation into insoluble sulfides, thereby escaping further biological processing. These findings suggest that terrestrial OM input could play a more pivotal role in trace metal processing in coastal environments than hitherto acknowledged. (c) 2020 The Authors. Published by Elsevier B.V.Peer reviewe

    Depth and intensity of the sulfate-methane transition zone control sedimentary molybdenum and uranium sequestration in a eutrophic low-salinity setting

    Get PDF
    Molybdenum (Mo) and uranium (U) contents in sedimentary archives are often used to reconstruct past changes in seafloor oxygenation. However, their sequestration processes are as yet poorly constrained in low-salinity coastal waters, which often suffer from anthropogenic eutrophication but only mild oxygen depletion. Due to the consequent lack of robust long-term paleo-redox reconstructions in such settings often characterized by a shallow front of dissolved sulfide accumulation within the sediment pore waters, inadequate understanding of the long-term drivers behind oxygen loss impedes cost-effective mitigation of this environmental problem. Here, we investigate the mechanisms of Mo and U sequestration in an oxic, low-salinity coastal setting in the northern Baltic Sea where anthropogenic eutrophication over the 20th century has resulted in formation of a shallow sulfate-methane transition zone (SMTZ) in the sediment column of this brackish-water basin. Our results demonstrate remarkably similar patterns for authigenic Mo and U sequestration, whereby the depth and intensity of the SMTZ exerts a first-order control on their solid-phase uptake. Sequential extraction analysis suggests that a large part of the authigenic Mo pool is hosted by refractory Fe–S phases such as pyrite and nanoscale FeMoS4, implying that the Fe-sulfide pathway is the dominating process of authigenic Mo scavenging. However, we also observe a pool of extremely labile Mo deep within the SMTZ, which might record an intermediate phase in authigenic Mo sequestration and/or partial switch to the organic matter (OM) pathway at low dissolved Fe levels. Authigenic U resides in acid-extractable and refractory phases, likely reflecting uptake into poorly crystalline monomeric U(IV) and crystalline uraninite, respectively. Similarly to Mo, authigenic U uptake is active at two fronts within the SMTZ, paralleled by increases in dissolved sulfide levels, suggesting coupling between sulfide production and U reduction. Our results imply that both Mo and U could provide viable proxies for mild bottom water deoxygenation in these settings, through the indirect link between seafloor oxygen conditions and the depth of SMTZ. Of these, Mo appears to more robustly capture variations in seafloor oxygen levels due to the significantly higher share of the authigenic pool. However, temporal resolution of these proxies is limited by the vertical offset between seafloor and the zone of authigenic uptake, and the superimposed character of the signal at a given depth due to vertical migrations of the SMTZ. These results have important implications for the use of Mo and U as paleo-redox proxies in other low-salinity coastal settings exposed to eutrophication.</p

    Fourier ring correlation simplifies image restoration in fluorescence microscopy

    Get PDF
    Fourier ring correlation (FRC) has recently gained popularity among fluorescence microscopists as a straightforward and objective method to measure the effective image resolution. While the knowledge of the numeric resolution value is helpful in e.g., interpreting imaging results, much more practical use can be made of FRC analysis-in this article we propose blind image restoration methods enabled by it. We apply FRC to perform image de-noising by frequency domain filtering. We propose novel blind linear and non-linear image deconvolution methods that use FRC to estimate the effective point-spread-function, directly from the images. We show how FRC can be used as a powerful metric to observe the progress of iterative deconvolution. We also address two important limitations in FRC that may be of more general interest: how to make FRC work with single images (within certain practical limits) and with three-dimensional images with highly anisotropic resolution

    Density and function of actin-microdomains in healthy and NF1 deficient osteoclasts revealed by the combined use of atomic force and stimulated emission depletion microscopy

    Get PDF
    Actin and myosins (IIA, IIB, and X) generate mechanical forces in osteoclasts that drive functions such as migration and membrane trafficking. In neurofibromatosis, these processes are perturbed due to a mutation in neurofibromatosis type 1 (NF1) gene. This mutation leads to generation of hyperactive bone-resorbing osteoclasts that increases incidence of skeletal dysplasia e.g. early-onset osteoporosis in patients suffering from neurofibromatosis. To study the density and function of actin clusters in mutated cells we introduce a new approach for combined use of a stimulated emission depletion (STED) microscope with an atomic force microscope (AFM). We resolved actin-cores within actin-microdomains at four typical structures (podosome-belt, podosome raft, actin patches, and sealing zone) for osteoclasts cultured on bone as well as on glass. Densities of actin-cores in these structures were higher on bone than on glass, and the nearest neighbor distances were shortest in sealing zones, where also an accumulation of vesicular material was observed at their center. In NF1 deficient osteoclasts, the clustering was tighter and there was also more vesicular material accumulated inside the sealing zone. Using the STED-AFM system, we measured the condensation of the actin structures in real-time after a bone-coated cantilever was placed in contact with a differentiated osteoclast and found that the condensation of actin was initiated at 40 min, after sufficient local actin concentration was reached. A functional implication of the less dense clustering in NF1 deficient cells was that the adhesion of these cells was less specific for bone. The data and new methodologies presented here build a foundation for establishing novel actomyosin dependent mechanisms during osteoclast migration and resorption.</p

    Two-photon image-scanning microscopy with SPAD array and blind image reconstruction

    Get PDF
    Two-photon excitation (2PE) laser scanning microscopy is the imaging modality of choice when one desires to work with thick biological samples. However, its spatial resolution is poor, below confocal laser scanning microscopy. Here, we propose a straightforward implementation of 2PE image scanning microscopy (2PE-ISM) that, by leveraging our recently introduced single-photon avalanche diode (SPAD) array detector and a novel blind image reconstruction method, is shown to enhance the effective resolution, as well as the overall image quality of 2PE microscopy. With our adaptive pixel reassignment procedure similar to 1.6 times resolution increase is maintained deep into thick semi-transparent samples. The integration of Fourier ring correlation based semi-blind deconvolution is shown to further enhance the effective resolution by a factor of similar to 2 - and automatic background correction is shown to boost the image quality especially in noisy images. Most importantly, our 2PE-ISM implementation requires no calibration measurements or other input from the user, which is an important aspect in terms of day-to-day usability of the technique. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Evaluating image resolution in stimulated emission depletion microscopy

    Get PDF
    Precise knowledge of the effective spatial resolution in a stimulated emission depletion (STED) microscopy experiment is essential for reliable interpretation of the imaging results. STED microscopy theoretically provides molecular resolution, but practically different factors limit its resolution. Because these factors are related to both the sample and the system, a reliable estimation of the resolution is not straightforward. Here we show a method based on the Fourier ring correlation (FRC), which estimates an absolute resolution value directly from any STED and, more in general, pointscanning microscopy image. The FRC-based resolution metric shows terrific sensitivity to the image signal-to-noise ratio, as well as to all sample and system dependent factors. We validated the method both on commercial and on custom-made microscopes. Since the FRC-based metric can be computed in real time, without any prior information of the system/sample, it can become a fundamental tool for (i) microscopy users to optimize the experimental conditions and (ii) microscopy specialists to optimize the system conditions

    Pixel reassignment in image scanning microscopy: A re-evaluation

    No full text
    2019 Optical Society of America Image scanning microscopy is a technique based on confocal microscopy, in which the confocal pinhole is replaced by a detector array, and the resulting image is reconstructed, usually by the process of pixel reassignment. The detector array collects most of the fluorescent light, so the signal-to-noise ratio is much improved compared with confocal microscopy with a small pinhole, while the resolution is improved compared with conventional (wide-field) microscopy. In previous studies, it has usually been assumed that pixels should be reassigned by a constant factor, to a point midway between the illumination and detection spots. Here it is shown that the peak intensity of the effective point spread function (PSF) can be further increased by 4% by a new choice of the pixel reassignment factor. For an array of two Airy units, the peak of the effective PSF is 1.90 times that of a conventional microscope, and the transverse resolution is 1.53 times better. It is confirmed that image scanning microscopy gives optical sectioning strength identical to that of a confocal microscope with a pinhole equal to the size of the detector array. However, it is shown that image scanning microscopy exhibits axial resolution superior to a confocal microscope with a pinhole the same size as the detector array. For a two-Airy-unit array, the axial resolution is 1.34 times better than in a conventional microscope for the standard reassignment factor, and 1.28 times better for the new reassignment factor. The axial resolution of a confocal microscope with a two-Airy-unit pinhole is only 1.04 times better than conventional microscopy. We also examine the signal-to-noise ratio of a point object in a uniform background (called the detectability), and show that it is 1.6 times higher than in a confocal microscope
    corecore