75 research outputs found

    Winter Camp: A Blog from the Greenland Summit, Part II

    Get PDF
    An earlier issue presents the first half of the author's experience living and working at the National Science Foundation's (NSF) Greenland Summit Camp. The author is a remote-sensing glaciologist at NASA s Goddard Space Flight Center. She took measurements that will be used to validate data collected by NASA s Aqua, Terra, and Ice, Clouds, and land Elevation Satellite (ICESat) satellites with ground-truth measurements of the Greenland Ice Sheet she made at Summit Camp from November 2008-February 2009. This article presents excerpts from the second half of her stay and work at the Greenland Summit

    Winter Camp: A Blog from the Greenland Summit

    Get PDF
    This article presents the first half of the author's experience living and working at the National Science Foundation's (NSF) Greenland Summit Camp. The author is a remote-sensing glaciologist at NASA's Goddard Space Flight Center. She took measurements that will be used to validate data collected by NASA s Aqua, Terra, and Ice, Clouds, and land Elevation Satellite (ICESat) satellites with ground-truth measurements of the Greenland Ice Sheet she made at Summit Camp from November 2008-February 2009. This article presents excerpts from the second half of her stay and work at the Greenland Summit. The second half of the story is presented in another issue of this journa

    Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer

    Get PDF
    pre-printA perennial storage of water in a firn aquifer was discovered in southeast Greenland in 2011. We present the first in situ measurements of the aquifer, including densities and temperatures. Water was present at depths between ~12 and 37m and amounted to 18.7 ± 0.9 kg in the extracted core. The water filled the firn to capacity at ~35m. Measurements show the aquifer temperature remained at the melting point, representing a large heat reservoir within the firn. Using model results of liquid water extent and aquifer surface depth from radar measurements, we extend our in situ measurements to the Greenland ice sheet. The estimated water volume is 140 ± 20 Gt, representing ~0.4mm of sea level rise (SLR). It is unknown if the aquifer temporary buffers SLR or contributes to SLR through drainage and/or ice dynamics

    The SUMup Dataset: Compiled Measurements of Surface Mass Balance Components over Ice Sheets and Sea Ice with Analysis over Greenland

    Get PDF
    Increasing atmospheric temperatures over ice cover affect surface processes, including melt, snowfall, and snow density. Here, we present the Surface Mass Balance and Snow on Sea Ice Working Group (SUMup) dataset, a standardized dataset of Arctic and Antarctic observations of surface mass balance components. The July 2018 SUMup dataset consists of three subdatasets, snow/firn density (https://doi.org/10.18739/A2JH3D23R), at least near-annually resolved snow accumulation on land ice (https://doi.org/10.18739/A2DR2P790), and snow depth on sea ice (https://doi.org/10.18739/A2WS8HK6X), to monitor change and improve estimates of surface mass balance. The measurements in this dataset were compiled from field notes, papers, technical reports, and digital files. SUMup is a compiled, community-based dataset that can be and has been used to evaluate modeling efforts and remote sensing retrievals. Active submission of new or past measurements is encouraged. Analysis of the dataset shows that Greenland Ice Sheet density measurements in the top 1m do not show a strong relationship with annual temperature. At Summit Station, Greenland, accumulation and surface density measurements vary seasonally with lower values during summer months. The SUMup dataset is a dynamic, living dataset that will be updated and expanded for community use as new measurements are taken and new processes are discovered and quantified

    Comparison of Satellite, Thermochron and Air Temperatures at Summit, Greenland, During the Winter of 2008/09

    Get PDF
    Current trends show rise in Arctic surface and air temperatures, including over the Greenland ice sheet where rising temperatures will contribute to increased sea-level rise through increased melt. We aim to establish the uncertainties in using satellite-derived surface temperature for measuring Arctic surface temperature, as satellite data are increasingly being used to assess temperature trends. To accomplish this, satellite-derived surface temperature, or land-surface temperature (LST), must be validated and limitations of the satellite data must he assessed quantitatively. During the 2008/09 boreal winter at Summit, Greenland, we employed data from standard US National Oceanic and Atmospheric Administration (NOAA) air-temperature instruments, button-sized temperature sensors called thermochrons and the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument to (1) assess the accuracy and utility of thermochrons in an ice-sheet environment and (2) compare MODIS-derived LSTs with thermochron-derived surface and air temperatures. The thermochron-derived air temperatures were very accurate, within 0.1+/-0.3 C of the NOAA-derived air temperature, but thermochron-derived surface temperatures were approx. 3 C higher than MODIS-derived LSTs. Though the surface temperature is largely determined by air temperature, these variables can differ significantly. Furthermore, we show that the winter-time mean air temperature, adjusted to surface temperature was approx. 11 C higher than the winter-time mean MODIS-derived LST. This marked difference occurs largely because of satellite-derived LSTs cannot be measured through cloud cover, so caution must be exercised in using time series of satellite LST data to study seasonal temperature trends

    Aquarius Radiometer and Scatterometer Weekly-Polar-Gridded Products to Monitor Ice Sheets, Sea Ice, and Frozen Soil

    Get PDF
    Space-based microwave sensors have been available for several decades, and with time more frequencies have been offered. Observations made at frequencies between 7 and 183 GHz were often used for monitoring cryospheric properties (e.g. sea ice concentration, snow accumulation, snow melt extent and duration). Since 2009, satellite observations are available at the low frequency of 1.4 GHz. Such observations are collected by the Soil Moisture and Ocean Salinity (SMOS) mission, and the AquariusSAC-D mission. Even though these missions have been designed for the monitoring of soil moisture and sea surface salinity, new applications are being developed to study the cryosphere. For instance, L-band observations can be used to monitor soil freezethaw (e.g. Rautiainen et al., 2012), and thin sea ice thickness (e.g. Kaleschke et al., 2010, Huntemann et al., 2013). Moreover, with the development of satellite missions comes the need for calibration and validation sites. These sites must have stable characteristics, such as the Antarctic Plateau (Drinkwater et al., 2004, Macelloni et al., 2013). Therefore, studying the cryosphere with 1.4 GHz observations is relevant for both science applications, and remote sensing applications

    Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    Get PDF
    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant

    Initial in Situ Measurements of Perennial Meltwater Storage in the Greenland Firn Aquifer

    Get PDF
    A perennial storage of water in a firn aquifer was discovered in southeast Greenland in 2011. We present the first in situ measurements of the aquifer, including densities and temperatures. Water was present at depths between approx. 12 and 37m and amounted to 18.7 +/- 0.9 kg in the extracted core. The water filled the firn to capacity at approx. 35m. Measurements show the aquifer temperature remained at the melting point, representing a large heat reservoir within the firn. Using model results of liquid water extent and aquifer surface depth from radar measurements, we extend our in situ measurements to the Greenland ice sheet. The estimated water volume is 140 +/- 20 Gt, representing approx. 0.4mm of sea level rise (SLR). It is unknown if the aquifer temporary buffers SLR or contributes to SLR through drainage and/or ice dynamics
    corecore