4 research outputs found

    Detection of contactin-2 in cerebrospinal fluid (CSF) of patients with Alzheimer's disease using Fluorescence Correlation Spectroscopy (FCS)

    No full text
    Objectives Alzheimer's disease (AD) is the most common cause of dementia in the world. As many AD biomarkers occur at rather low abundances in CSF or blood, techniques of very high sensitivity and accuracy are important as diagnostic tools in the clinic. Here, we aimed to provide proof of concept of the use of a single molecule detection technique, Fluorescence Correlation Spectroscopy (FCS) for detection of novel candidate biomarkers for AD. Design and methods FCS detects the diffusion times of the antigen-antibody complexes in highly diluted sample solutions, thus eliminating the need of large sample volumes and allows estimating the concentration of the target antigen. We developed a FCS set-up for contactin-2, a neuronal cell adhesion molecule and a ligand of beta-secretase 1 (BACE1) and amyloid precursor protein (APP), the latter proteins being important players in AD. With this method, we investigated whether contactin-2 concentrations are changed after delayed storage and in patients with Alzheimer's disease. Results The FCS set-up for measuring contactin-2 in CSF had a lower limit of quantification (LLOQ) of 0.2 ng/ml and intra- and inter-assay coefficients of variation (CVs) of 12.2% and 14.6% respectively. Contactin-2 levels were stable up to one week storage of CSF (n = 3) at RT and 4 °C. Further, contactin-2 levels were similar in probable AD patients (n = 34, p = 0.27) compared to patients with subjective cognitive decline (SCD) (n = 11). Conclusions FCS is a sensitive tool, which can be used for detecting biomarkers in the clinical setting using very low sample volumes (10 μl) and can measure proteins in their native conformations in the body fluid

    Identification of novel cerebrospinal fluid biomarker candidates for dementia with Lewy bodies: a proteomic approach

    No full text
    Background: Diagnosis of dementia with Lewy bodies (DLB) is challenging, largely due to a lack of diagnostic tools. Cerebrospinal fluid (CSF) biomarkers have been proven useful in Alzheimer's disease (AD) diagnosis. Here, we aimed to identify novel CSF biomarkers for DLB using a high-throughput proteomic approach. Methods: We applied liquid chromatography/tandem mass spectrometry with label-free quantification to identify biomarker candidates to individual CSF samples from a well-characterized cohort comprising patients with DLB (n = 20) and controls (n = 20). Validation was performed using (1) the identical proteomic workflow in an independent cohort (n = 30), (2) proteomic data from patients with related neurodegenerative diseases (n = 149) and (3) orthogonal techniques in an extended cohort consisting of DLB patients and controls (n = 76). Additionally, we utilized random forest analysis to identify the subset of candidate markers that best distinguished DLB from all other groups. Results: In total, we identified 1995 proteins. In the discovery cohort, 69 proteins were differentially expressed in DLB compared to controls (p < 0.05). Independent cohort replication confirmed VGF, SCG2, NPTX2, NPTXR, PDYN and PCSK1N as candidate biomarkers for DLB. The downregulation of the candidate biomarkers was somewhat more pronounced in DLB in comparison with related neurodegenerative diseases. Using random forest analysis, we identified a panel of VGF, SCG2 and PDYN to best differentiate between DLB and other clinical groups (accuracy: 0.82 (95%CI: 0.75-0.89)). Moreover, we confirmed the decrease of VGF and NPTX2 in DLB by ELISA and SRM methods. Low CSF levels of all biomarker candidates, except PCSK1N, were associated with more pronounced cognitive decline (0.37 < r < 0.56, all p < 0.01). Conclusion: We identified and validated six novel CSF biomarkers for DLB. These biomarkers, particularly when used as a panel, show promise to improve diagnostic accuracy and strengthen the importance of synaptic dysfunction in the pathophysiology of DLB
    corecore