3,693 research outputs found

    Life and reliability models for helicopter transmissions

    Get PDF
    Computer models of life and reliability are presented for planetary gear trains with a fixed ring gear, input applied to the sun gear, and output taken from the planet arm. For this transmission the input and output shafts are co-axial and the input and output torques are assumed to be coaxial with these shafts. Thrust and side loading are neglected. The reliability model is based on the Weibull distributions of the individual reliabilities of the in transmission components. The system model is also a Weibull distribution. The load versus life model for the system is a power relationship as the models for the individual components. The load-life exponent and basic dynamic capacity are developed as functions of the components capacities. The models are used to compare three and four planet, 150 kW (200 hp), 5:1 reduction transmissions with 1500 rpm input speed to illustrate their use

    Autophagosome closure requires membrane scission

    No full text

    Real-time observation of interfering crystal electrons in high-harmonic generation

    Full text link
    Accelerating and colliding particles has been a key strategy to explore the texture of matter. Strong lightwaves can control and recollide electronic wavepackets, generating high-harmonic (HH) radiation which encodes the structure and dynamics of atoms and molecules and lays the foundations of attosecond science. The recent discovery of HH generation in bulk solids combines the idea of ultrafast acceleration with complex condensed matter systems and sparks hope for compact solid-state attosecond sources and electronics at optical frequencies. Yet the underlying quantum motion has not been observable in real time. Here, we study HH generation in a bulk solid directly in the time-domain, revealing a new quality of strong-field excitations in the crystal. Unlike established atomic sources, our solid emits HH radiation as a sequence of subcycle bursts which coincide temporally with the field crests of one polarity of the driving terahertz waveform. We show that these features hallmark a novel non-perturbative quantum interference involving electrons from multiple valence bands. The results identify key mechanisms for future solid-state attosecond sources and next-generation lightwave electronics. The new quantum interference justifies the hope for all-optical bandstructure reconstruction and lays the foundation for possible quantum logic operations at optical clock rates

    Exploring Outliers in Crowdsourced Ranking for QoE

    Full text link
    Outlier detection is a crucial part of robust evaluation for crowdsourceable assessment of Quality of Experience (QoE) and has attracted much attention in recent years. In this paper, we propose some simple and fast algorithms for outlier detection and robust QoE evaluation based on the nonconvex optimization principle. Several iterative procedures are designed with or without knowing the number of outliers in samples. Theoretical analysis is given to show that such procedures can reach statistically good estimates under mild conditions. Finally, experimental results with simulated and real-world crowdsourcing datasets show that the proposed algorithms could produce similar performance to Huber-LASSO approach in robust ranking, yet with nearly 8 or 90 times speed-up, without or with a prior knowledge on the sparsity size of outliers, respectively. Therefore the proposed methodology provides us a set of helpful tools for robust QoE evaluation with crowdsourcing data.Comment: accepted by ACM Multimedia 2017 (Oral presentation). arXiv admin note: text overlap with arXiv:1407.763

    Stabilization of collapse and revival dynamics by a non-Markovian phonon bath

    Full text link
    Semiconductor quantum dots (QDs) have been demonstrated to be versatile candidates to study the fundamentals of light-matter interaction [1-3]. In contrast with atom optics, dissipative processes are induced by the inherent coupling to the environment and are typically perceived as a major obstacle towards stable performances in experiments and applications [4]. In this paper we show that this is not necessarily the case. In fact, the memory of the environment can enhance coherent quantum optical effects. In particular, we demonstrate that the non-Markovian coupling to an incoherent phonon bath has a stabilizing effect on the coherent QD cavity-quantum electrodynamics (cQED) by inhibiting irregular oscillations and boosting regular collapse and revival patterns. For low photon numbers we predict QD dynamics that deviate dramatically from the well-known atomic Jaynes-Cummings model. Our proposal opens the way to a systematic and deliberate design of photon quantum effects via specifically engineered solid-state environments.Comment: 5 pages, 4 figure

    Posing for a picture: vesicle immobilization in agarose gel

    No full text
    • …
    corecore