3 research outputs found
Electrochemical corrosion studies
The objective was to gain familiarity with the Model 350 Corrosion Measurement Console, to determine if metal protection by grease coatings can be measured by the polarization-resistance method, and to compare corrosion rates of 4130 steel coated with various greases. Results show that grease protection of steel may be determined electrochemically. Studies were also conducted to determine the effectiveness of certain corrosion inhibitors on aluminum and steel
The variation of corrosion potential with time for coated metal surfaces
The variation of corrosion potential (EsubCORR) with time has been measured for 4130 steel coated with a preservative compound and for primer coated 2219-T87 aluminum. The data for coated steel samples show a great deal of scatter, and a smoothing procedure has been developed to enable proper interpretation of the data. The EsubCORR-time curves for coated steel exhibit a maximum, in agreement with the results of previous studies, where the data were the average of those for a large number of samples, while the present data were obtained from a single sample. In contrast, the EsubCORR-time curves for primer coated 2219-T87 aluminum samples show no significant variations, although considerable activity is indicated by the resistance-time and corrosion rate-time curves
The corrosion mechanisms for primer coated 2219-T87 aluminum
To investigate metal surface corrosion and the breakdown of metal protective coatings, the ac Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The EG&GPARC Model 368 ac Impedance Measurement System, along with dc measurements with the same system using the Polarization Resistance Method, was used to monitor changing properties of coated aluminum disks immersed in 3.5 percent NaCl solutions buffered at pH 5.5 and pH 8.2 over periods of 40 days each. The corrosion system can be represented by an electronic analog called an equivalent circuit consisting of resistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacitances, that can be assigned in the equivalent circuit following a least squares analysis of the data, describe changes occurring on the corroding metal surface and in the protective coatings. A suitable equivalent circuit has been determined which predicts the correct Bode phase and magnitude for the experimental sample. The dc corrosion current density data are related to equivalent circuit element parameters