2,456 research outputs found

    Military Children’s Difficulty with Reintegration after Deployment: A Relational Turbulence Model Perspective

    Get PDF
    This study drew on the relational turbulence model to investigate how the interpersonal dynamics of military couples predict parents’ reports of the reintegration difficulty of military children upon homecoming after deployment. Longitudinal data were collected from 118 military couples once per month for 3 consecutive months after reunion. Military couples reported on their depressive symptoms, characteristics of their romantic relationship, and the reintegration difficulty of their oldest child. Results of dyadic growth curve models indicated that the mean levels of parents’ depressive symptoms (H1), relationship uncertainty (H2), and interference from a partner (H3) were positively associated with parents’ reports of military children’s reintegration difficulty. These findings suggest that the relational turbulence model has utility for illuminating the reintegration difficulty of military children during the postdeployment transition

    REGIONAL IMPACTS OF ALTERNATIVE ENERGY ALLOCATION STRATEGIES

    Get PDF
    In this paper we report on the development and use of an information system for state or regional energy planning which attempts to deal with both external effects and information needs. A regional economic model is included as an integral part of the information system. External impacts of alternative energy allocation rules are simulated and criteria for evaluating these impacts are presented.Community/Rural/Urban Development,

    Solidification in soft-core fluids: disordered solids from fast solidification fronts

    Get PDF
    Using dynamical density functional theory we calculate the speed of solidification fronts advancing into a quenched two-dimensional model fluid of soft-core particles. We find that solidification fronts can advance via two different mechanisms, depending on the depth of the quench. For shallow quenches, the front propagation is via a nonlinear mechanism. For deep quenches, front propagation is governed by a linear mechanism and in this regime we are able to determine the front speed via a marginal stability analysis. We find that the density modulations generated behind the advancing front have a characteristic scale that differs from the wavelength of the density modulation in thermodynamic equilibrium, i.e., the spacing between the crystal planes in an equilibrium crystal. This leads to the subsequent development of disorder in the solids that are formed. For the one-component fluid, the particles are able to rearrange to form a well-ordered crystal, with few defects. However, solidification fronts in a binary mixture exhibiting crystalline phases with square and hexagonal ordering generate solids that are unable to rearrange after the passage of the solidification front and a significant amount of disorder remains in the system.Comment: 18 pages, 14 fig

    Normal and Abnormal Personality Traits are Associated with Marital Satisfaction for both Men and Women: An Actor–Partner Interdependence Model Analysis

    Get PDF
    Research has demonstrated associations between relationship satisfaction and personality traits. Using the Actor–Partner Interdependence Model, we explored associations between self-reported relationship satisfaction in couples (n = 118) and various measures of normal and abnormal personality, including higher-order dimensions of PE/Extraversion, NE/Neuroticism, Constraint (CON), and their lower-order facets. We also examined gender differences and moderators of associations. Consistent with the Vulnerability Stress Adaptation Model, self- and partner-reported NE and PE were related to satisfaction, and their lower-order traits demonstrated differential associations with satisfaction. Further, abnormal personality traits specific to the interpersonal domain and personality disorder symptoms demonstrated effects. Relationship length emerged as a significant moderator, with associations weakening as relationship duration increased

    Amplitude equations for a system with thermohaline convection

    Full text link
    The multiple scale expansion method is used to derive amplitude equations for a system with thermohaline convection in the neighborhood of Hopf and Taylor bifurcation points and at the double zero point of the dispersion relation. A complex Ginzburg-Landau equation, a Newell-Whitehead-type equation, and an equation of the Ď•4\phi^4 type, respectively, were obtained. Analytic expressions for the coefficients of these equations and their various asymptotic forms are presented. In the case of Hopf bifurcation for low and high frequencies, the amplitude equation reduces to a perturbed nonlinear Schr\"odinger equation. In the high-frequency limit, structures of the type of "dark" solitons are characteristic of the examined physical system.Comment: 21 pages, 8 figure

    Buoyancy driven rotating boundary currents

    Get PDF
    The structure of boundary currents formed from intermediately dense water introduced into a rotating, stably stratified, two-layer environment is investigated in a series of laboratory experiments, performed for Froude numbers ranging from 0.01 to 1. The thickness and streamwise velocity profiles in quasi-steady currents are measured using a pH activated tracer (thymol blue) and found to compare favorably to simplified analytic solutions and numerical models. Currents flowing along sloping boundaries in a stratified background exhibit robust stability at all experimental Froude numbers. Such stability is in sharp contrast to the unequivocal instability of such currents flowing against vertical boundaries, or of currents flowing along slopes in a uniform background. The presence of a variety of wave mechanisms in the ambient medium might account for the slower and wider observed structures and the stability of the currents, by effecting the damping of disturbances through wave radiation.Comment: 9 pages with 2 figures to appear in Ann NYAS "Long range effects in physics and astrophysics

    Periodic phase-locking and phase slips in active rotator systems

    No full text
    The Adler equation with time-periodic frequency modulation is studied. A series of resonances between the period of the frequency modulation and the time scale for the generation of a phase slip is identified. The resulting parameter space structure is determined using a combination of numerical continuation, time simulations and asymptotic methods. Regions with an integer number of phase slips per period are separated by regions with noninteger numbers of phase slips, and include canard trajectories that drift along unstable equilibria. Both high and low frequency modulation is considered. An adiabatic description of the low frequency modulation regime is found to be accurate over a large range of modulation periods

    Time-periodic forcing of spatially localized structures

    Get PDF
    We study localized states in the Swift–Hohenberg equation when time periodic parametric forcing is introduced. The presence of a time-dependent forcing introduces a new characteristic time which creates a series of resonances with the depinning time of the fronts bounding the localized pattern. The organization of these resonances in parameter space can be understood using appropriate asymptotics. A number of distinct canard trajectories involved in the observed transitions are constructed

    Restraining and unleashing chromatin remodelers - structural information guides chromatin plasticity.

    Get PDF
    Chromatin remodeling enzymes are large molecular machines that guard the genome by reorganizing chromatin structure. They can reposition, space and evict nucleosomes and thus control gene expression, DNA replication and repair. Recent cryo-electron microscopy (cryo-EM) analyses have captured snapshots of various chromatin remodelers as they interact with nucleosomes. In this review, we summarize and discuss the advances made in our understanding of the regulation of chromatin remodelers, the mode of DNA translocation, as well as the influence of associated protein domains and remodeler subunits on the specific functions of chromatin remodeling complexes. The emerging structural information will help our understanding of disease mechanisms and guide our knowledge toward innovative therapeutic interventions. Copyright © 2020 Elsevier Ltd. All rights reserved
    • …
    corecore