14 research outputs found

    Suppression of root-endogenous fungi in persistently inundated Typha roots

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Mycologia in 2019, available online: https://www.tandfonline.com/toc/umyc20/currentWetland soils are defined by anoxic and reducing conditions that impose biogeochemically hostile conditions on plant roots and their endogenous fungal communities. The cosmopolitan wetland plant Typha L. mitigates root-zone anoxia efficiently, such that roots of these plants may constitute fungal habitats similar to roots in subaerially-exposed soils. Alternatively, fungi may compete with plant cells for limited oxygen in inundated roots. We hypothesized that extrinsic environmental factors may reduce fungal incidence and affect fungal community structure within inundated roots as compared to those in subaerially-exposed soils. We sampled roots of Typha spp. plants across inundation gradients in constructed reservoirs; root subsamples were microscopically examined for fungal structures, and morphologically-distinct fungal endophytes were cultured and isolated from surface sterilized subsamples. We found that the incidence of fungal hyphae was suppressed for all types of vegetative mycelia when roots were inundated, regardless of depth, but that there were no obvious differences in community composition of fungi cultured from roots growing in inundated vs subaerially-exposed soils. This suggests that the suppression of hyphae we observed in root samples did not result from changes in community composition. Instead, low hyphal incidence in inundated Typha roots may reflect germinal inhibition or unsuccessful initial colonization, possibly owing to plant-mediated redox dynamism in the surrounding soil. No variation was seen in the incidence of asexual spores, or chytridiomycetes, nor were there significant differences between geographically disparate sampling sites. Communities of root-endogenous fungi may therefore be influenced more strongly by external environmental factors, than by the environments that plant roots comprise

    Microbiological insights into ecology and taphonomy of prehistoric wetlands.

    Get PDF
    In the course of this dissertation, I present investigations of the microbial constituents of fossil plants preserved at an anatomical level of detail, and detail the results of an ecological survey of root-endogenous fungi within the cosmopolitan emergent macrophyte, Typha. These studies together elucidate processes in the taphonomy of fossil plants. Biostratinomy is addressed through descriptions of saprotrophic communities within the Eocene Princeton Chert mire assemblage, and within a Carboniferous fern which previous studies had suggested contained fossilized actinobacteria. Re-investigation of the ‘actinobacteria’ suggests instead that the structures are disordered ferrous dolomites, raising implications for the contribution of sulfate-reducing bacteria to the early-diagenesis mineralization of plants preserved in carbonaceous concretions. The fossilized remains of saprotrophic and putatively endophytic fungi within roots of in-situ plants from the Princeton Chert also provide insight into early diagenesis. Some of the fungi described herein are preserved in several co-occurring developmental phases, providing evidence that early phases of silicification in this assemblage were rapid. As the Princeton Chert is not a hot-spring sinter deposit, these data conflict with prior hypotheses for the preservation of this peat-forming wetland assemblage. Understanding the microbial paleoecology of this system, and other wetland assemblages that constitute paleobotanical Konservat-lagerstätten, will provide important foundations upon which to improve hypotheses of plant-microbe interactions in the fossil record. Research into fossil plant-microbe interactions must, however, be conducted with reference to appropriate biogeochemical analogues. The concluding component of this dissertation establishes that endogenous fungi in contemporary wetland plant roots are affected by persistent inundation. Although the constituents of root-endogenous communities do not appear to change between inundated roots and those growing in subaerially-exposed soils, their incidence within roots does differ. These data offer clear implications for assessing the probable ecology of in-situ fossil plants that hosted endogenous microbial communities during life

    Paleomycology of the Princeton Chert II. Dark-septate fungi in the aquatic angiosperm Eorhiza arnoldii indicate a diverse assemblage of root-colonizing fungi during the Eocene

    Get PDF
    This is the publisher's version, also available electronically from http://www.mycologia.org/content/105/5/1100Tissues of the extinct aquatic or emergent angiosperm, Eorhiza arnoldii incertae sedis, were extensively colonized by microfungi, and in this study we report the presence of several types of sterile mycelia. In addition to inter- and intracellular proliferation of regular septate hyphae, the tissues contain monilioid hyphae with intercalary branching. These filamentous mycelia are spatially associated with two distinct morphotypes of intracellular microsclerotia. These quiescent structures are morphologically similar to loose and cerebriform microsclerotia found within the living tissues of some plants, which have been attributed to an informal assemblage of dematiaceous ascomycetes, the dark-septate endophytes. While there are significant challenges to interpreting the ecology of fossilized fungi, these specimens provide evidence for asymptomatic endophytic colonization of the rooting structures of a 48.7 million year old aquatic angiosperm

    Paleomycology of the Princeton Chert I. Fossil hyphomycetes associated with the early Eocene aquatic angiosperm, Eorhiza arnoldii

    Get PDF
    This is the publisher's version, also available electronically from http://www.mycologia.org/content/105/3/521The Eocene (~ 48.7 Ma, Ypresian–Lutetian) Princeton Chert of British Columbia, Canada, has long been recognized as a significant paleobotanical locality, and a diverse assemblage of anatomically preserved fossil plants has been extensively documented. Co-occurring fossil fungi also have been observed, but the full scope of their diversity has yet to be comprehensively assessed. Here, we present the first of a series of investigations of fossilized fungi associated with the silicified plants of the Princeton Chert. This report focuses on saprotrophic, facultative-aquatic hyphomycetes observed in cortical aerenchyma tissue of an enigmatic angiosperm, Eorhiza arnoldii. Our use of paleontological thin sections provides the opportunity to observe and infer developmental features, making it possible to more accurately attribute two hyphomycetes that were observed in previous studies. These comprise multiseptate, holothallic, chlamydospore-like phragmoconidia most similar to extant Xylomyces giganteus and basipetal phragmospore-like chains of amerospores like those of extant Thielaviopsis basicola. We also describe a third hyphomycete that previously has not been recognized from this locality; biseptate, chlamydosporic phragmoconidia are distinguished by darkly melanized, inflated apical cells and are morphologically similar to Brachysporiella rhizoidea or Culcitalna achraspora

    Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy

    Get PDF
    We sought to determine the mechanisms underlying failure of muscle regeneration that is observed in dystrophic muscle through hypothesis generation using muscle profiling data (human dystrophy and murine regeneration). We found that transforming growth factor β-centered networks strongly associated with pathological fibrosis and failed regeneration were also induced during normal regeneration but at distinct time points. We hypothesized that asynchronously regenerating microenvironments are an underlying driver of fibrosis and failed regeneration. We validated this hypothesis using an experimental model of focal asynchronous bouts of muscle regeneration in wild-type (WT) mice. A chronic inflammatory state and reduced mitochondrial oxidative capacity are observed in bouts separated by 4 d, whereas a chronic profibrotic state was seen in bouts separated by 10 d. Treatment of asynchronously remodeling WT muscle with either prednisone or VBP15 mitigated the molecular phenotype. Our asynchronous regeneration model for pathological fibrosis and muscle wasting in the muscular dystrophies is likely generalizable to tissue failure in chronic inflammatory states in other regenerative tissues

    Plant-Arthropod Interactions in Acanthostrobus edenensis

    No full text
    corecore