31 research outputs found

    Interferometric, Astrometric, and Photometric Studies of Epsilon Aurigae: Seeing the Disk Around a Distant Star

    Get PDF
    Epsilon (ε) Aurigae is a binary star system that has baffled astronomers for 170 years. In 1821 it was first noticed that the star system had dimmed by nearly 50%. After many decades of photometric monitoring, the 27.1 year period was finally established in 1903. A few years later, in 1912, Henry Norris Russell published the first analytic methods for binary star analysis. Later application of these formulae came to an interesting conclusion; the system was composed of two stars: the visible F-type supergiant, and an equally massive, but yet photometrically and spectroscopically invisible, companion. Several theories were advanced to explain this low-light to high-mass conundrum, eventually settling on the notion that the companion object is obscured from view by a disk of opaque material. With this topic solved, the debate shifted the evolutionary state of the system. Two scenarios became dominant: the system is either relativity young, and composed of a massive, 15 Mo (solar mass), F-type supergiant and a nearly equally massive main sequence companion inside of the disk; or a much older and significantly less massive, 4 Mo, F-type post-asymptotic giant branch object with a more massive, 6 Mo, companion surrounded by a debris disk. In this dissertation I disentangle the two evolutionary states by comparing the photometric behavior of the F-type star to known supergiant and post-asymptotic giant branch objects; and deriving a dynamical mass for the two components using astrometric, radial velocity, and interferometric data. Along with this, I provide the first interferometric images during the eclipse which prove the 50% dimming is indeed caused by an opaque disk. The first chapter presents the reader with the status quo of ε Aurigae research and the topics I wish to address in this dissertation. Chapter two presents an analysis of nearly 30 years of photometry on the system, concluding the star periodically exhibits stable pulsation on 1/3 orbital timescales. The next two chapters are complementary in many ways. Chapter three presents the first interferometric images of ε Aurigae during eclipse and models the star and eclipsing body in unprecedented detail. Chapter four presents new combined astrometric and radial velocity orbital solutions using a myriad of historical data sources and modern analysis techniques. Lastly in Chapter five I conclude that the system is in the high-mass evolutionary state and provide estimates of the system component masses and distance

    The 2010 Interferometric Imaging Beauty Contest

    Full text link
    We present the results of the fourth Optical/IR Interferometry Imaging Beauty Contest. The contest consists of blind imaging of test data sets derived from model sources and distributed in the OI-FITS format. The test data consists of spectral data sets on an object "observed" in the infrared with spectral resolution. There were 4 different algorithms competing this time: BSMEM the Bispectrum Maximum Entropy Method by Young, Baron & Buscher; RPR the Recursive Phase Reconstruction by Rengaswamy; SQUEEZE a Markov Chain Monte Carlo algorithm by Baron, Monnier & Kloppenborg; and, WISARD the Weak-phase Interferometric Sample Alternating Reconstruction Device by Vannier & Mugnier. The contest model image, the data delivered to the contestants and the rules are described as well as the results of the image reconstruction obtained by each method. These results are discussed as well as the strengths and limitations of each algorithm.Comment: To be published in SPIE 2010 "Optical and infrared interferometry II

    Interferometric Studies of the extreme binary, ϵ\epsilon Aurigae: Pre-eclipse Observations

    Full text link
    We report new and archival K-band interferometric uniform disk diameters obtained with the Palomar Testbed Interferometer for the eclipsing binary star ϵ\epsilon Aurigae, in advance of the start of its eclipse in 2009. The observations were inteded to test whether low amplitude variations in the system are connected with the F supergiant star (primary), or with the intersystem material connecting the star with the enormous dark disk (secondary) inferred to cause the eclipses. Cepheid-like radial pulsations of the F star are not detected, nor do we find evidence for proposed 6% per decade shrinkage of the F star. The measured 2.27 +/- 0.11 milli-arcsecond K band diameter is consistent with a 300 times solar radius F supergiant star at the Hipparcos distance of 625 pc. These results provide an improved context for observations during the 2009-2011 eclipse.Comment: Accepted for Ap.J. Letters, Oct. 200

    Interferometry of ϵ\epsilon Aurigae: Characterization of the asymmetric eclipsing disk

    Full text link
    We report on a total of 106 nights of optical interferometric observations of the ϵ\epsilon Aurigae system taken during the last 14 years by four beam combiners at three different interferometric facilities. This long sequence of data provides an ideal assessment of the system prior to, during, and after the recent 2009-2011 eclipse. We have reconstructed model-independent images from the 10 in-eclipse epochs which show that a disk-like object is indeed responsible for the eclipse. Using new 3D, time-dependent modeling software, we derive the properties of the F-star (diameter, limb darkening), determine previously unknown orbital elements (Ω\Omega, ii), and access the global structures of the optically thick portion of the eclipsing disk using both geometric models and approximations of astrophysically relevant density distributions. These models may be useful in future hydrodynamical modeling of the system. Lastly, we address several outstanding research questions including mid-eclipse brightening, possible shrinking of the F-type primary, and any warps or sub-features within the disk.Comment: 105 pages, 57 figures. This is an author-created, un-copyedited version of an article accepted for publication in Astrophysical Journal Supplement Series. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Probing the Inner Disk Emission of the Herbig Ae Stars HD 163296 and HD 190073

    Get PDF
    The physical processes occurring within the inner few astronomical units of proto-planetary disks surrounding Herbig Ae stars are crucial to setting the environment in which the outer planet-forming disk evolves and put critical constraints on the processes of accretion and planet migration. We present the most complete published sample of high angular resolution H- and K-band observations of the stars HD 163296 and HD 190073, including 30 previously unpublished nights of observations of the former and 45 nights of the latter with the CHARA long-baseline interferometer, in addition to archival VLTI data. We confirm previous observations suggesting significant near-infrared emission originates within the putative dust evaporation front of HD 163296 and show this is the case for HD 190073 as well. The H- and K-band sizes are the same within (3±3)%(3 \pm 3)\% for HD 163296 and within (6±10)%(6 \pm 10)\% for HD 190073. The radial surface brightness profiles for both disks are remarkably Gaussian-like with little or no sign of the sharp edge expected for a dust evaporation front. Coupled with spectral energy distribution analysis, our direct measurements of the stellar flux component at H and K bands suggest that HD 190073 is much younger (<400 kyr) and more massive (~5.6 M_\odot) than previously thought, mainly as a consequence of the new Gaia distance (891 pc).Comment: 19 pages, 6 figure

    Dusty disk winds at the sublimation rim of the highly inclined, low mass YSO SU Aurigae

    Get PDF
    T Tauri stars are low-mass young stars whose disks provide the setting for planet formation. Despite this, their structure is poorly understood. We present new infrared interferometric observations of the SU Aurigae circumstellar environment that offer 3 x higher resolution and better baseline position angle coverage over previous observations. We investigate the characteristics of circumstellar material around SU Aur, constrain the disk geometry, composition and inner dust rim structure. The CHARA array offers opportunities for long baseline observations, with baselines up to 331 m. Using the CLIMB 3-telescope combiner in the K-band allows us to measure visibilities as well as closure phase. We undertook image reconstruction for model-independent analysis, and geometric modeling. Additionally, the fitting of radiative transfer models constrains the physical parameters of the disk. For the first time, a dusty disk wind is introduced to the radiative transfer code TORUS to model protoplanetary disks. Our implementation is motivated by theoretical dusty disk winds, where magnetic field lines drive dust above the disk plane close to the sublimation zone. Image reconstruction reveals an inclined disk with slight asymmetry along its minor-axis, likely due to inclination effects obscuring the inner disk rim through absorption of incident star light on the near-side and thermal re-emission/scattering of the far-side. Geometric modelling of a skewed ring finds the inner rim at 0.17+/-0.02 au with an inclination of 50.9+/-1.0 degrees and minor axis position angle 60.8+/-1.2 degrees. Radiative transfer modelling shows a flared disk with an inner radius at 0.18 au which implies a grain size of 0.4 um and a scale height of 15.0 au at 100 au. Among the tested radiative transfer models, only the dusty disk wind successfully accounts for the K-band excess by introducing dust above the mid-plane.Comment: Accepted for publication in Astronomy \& Astrophysic

    In the Shadow of the Transiting Disk: Imaging epsilon Aurigae in Eclipse

    Full text link
    Eclipses of the single-line spectroscopic binary star, epsilon Aurigae, provide an opportunity to study the poorly-defined companion. We used the MIRC beam combiner on the CHARA array to create interferometric images during eclipse ingress. Our results demonstrate that the eclipsing body is a dark disk that is opaque and tilted, and therefore exclude alternative models for the system. These data constrain the geometry and masses of the components, providing evidence that the F-star is not a massive supergiant star.Comment: As submitted to Nature. Published in Nature April 8, 2010
    corecore