32 research outputs found

    Enhanced Stability of Janus Nanoparticles by Covalent Cross-Linking of Surface Ligands

    No full text
    A mercapto derivative of diacetylene was used as the hydrophilic ligand to prepare Janus nanoparticles by using hydrophobic hexanethiolate-protected gold (AuC6, diameter 5 nm) nanoparticles as the starting materials. The amphiphilic surface characters of the Janus nanoparticles were verified by contact angle measurements, as compared to those of the bulk-exchange counterparts where the two types of ligands were distributed rather homogeneously on the nanoparticle surface. Dynamic light scattering studies showed that the Janus nanoparticles formed stable superstructures in various solvent media that were significantly larger than those by the bulk-exchange counterparts. This was ascribed to the amphiphilic characters of the Janus nanoparticles that rendered the particles to behave analogously to conventional surfactant molecules. Notably, because of the close proximity of the diacetylene moieties on the Janus nanoparticle surface, exposure to UV irradiation led to effective covalent cross-linking between the diacetylene moieties of neighboring ligands, as manifested in UV–vis and fluorescence measurements where the emission characteristics of dimers and trimers of diacetylene were rather well-defined, in addition to the monomeric emission. In contrast, for bulk-exchange nanoparticles, no trimer emission could be identified, and the intensity of dimer emission was markedly lower (though the intensity increased with increasing diacetylene coverage on the particle surface) under the otherwise identical experimental conditions. This is largely because the diacetylene ligands were distributed on the entire particle surface, and it was difficult to find a large number of ligands situated closely so that the stringent topochemical principles for the polymerization of diacetylene derivatives could be met. Importantly, the cross-linked Janus nanoparticles were found to exhibit marked enhancement of the structural integrity, which was attributable to the impeded surface diffusion of the thiol ligands on the nanoparticle surface, as manifested in fluorescence measurements of aged nanoparticles

    4,4′-([4,4′-Bipyridine]-1,1′-diium-1,1′-diyl)dibenzoate dihydrate

    No full text
    We report here the synthesis of a neutral viologen derivative, C24H16N2O4·2H2O. The non-solvent portion of the structure (Z-Lig) is a zwitterion, consisting of two positively charged pyridinium cations and two negatively charged carboxylate anions. The carboxylate group is almost coplanar [dihedral angle = 2.04 (11)°] with the benzene ring, whereas the dihedral angle between pyridine and benzene rings is 46.28 (5)°. The Z-Lig molecule is positioned on a center of inversion (Fig. 1). The presence of the twofold axis perpendicular to the c-glide plane in space group C2/c generates a screw-axis parallel to the b axis that is shifted from the origin by 1/4 in the a and c directions. This screw-axis replicates the molecule (and solvent water molecules) through space. The Z-Lig molecule links to adjacent molecules via O—H...O hydrogen bonds involving solvent water molecules as well as intermolecular C—H...O interactions. There are also π–π interactions between benzene rings on adjacent molecules

    Rational tuning of high-energy visible light absorption for panchromatic small molecules by a two-dimensional conjugation approach.

    No full text
    We have demonstrated a rational two-dimensional (2D) conjugation approach towards achieving panchromatic absorption of small molecules. By extending the conjugation on two orthogonal axes of an electron acceptor, namely, bay-annulated indigo (BAI), the optical absorptions could be tuned independently in both high- and low-energy regions. The unconventional modulation of the high-energy absorption is rationalized by density functional theory (DFT) calculations. Such a 2D tuning strategy provides novel guidelines for the design of molecular materials with tailored optoelectronic properties

    An Omics Approach to Mixed-Anion Electrolyte Discovery for Lithium Metal Batteries for Electric Aircraft

    No full text
    Here, we advance an omics approach to understand how lithium salts in locally super-concentrated electrolytes (LSCEs) should be mixed to create stable ionically conductive interphases in high-power Li|NMC811 cells charged to high voltage. Mixed-anion LCSEs maintain an areal ion flux of 6 mA cm–2 during discharge across 500 cycles with 70% capacity retention, outperforming single-salt LSCEs as well as single- and dual-salt concentrated electrolytes. These advantages stem from the enrichment of cathode–electrolyte interphases with fluoroethers, which suppress cathode corrosion and fracturing
    corecore