431 research outputs found

    Differential Host Determinants Contribute to the Pathogenesis of 2009 Pandemic H1N1 and Human H5N1 Influenza A Viruses in Experimental Mouse Models

    Get PDF
    Influenza viruses are responsible for high morbidities in humans and may, eventually, cause pandemics. Herein, we compared the pathogenesis and host innate immune responses of a seasonal H1N1, two 2009 pandemic H1N1, and a human H5N1 influenza virus in experimental BALB/c and C57BL/6J mouse models. We found that both 2009 pandemic H1N1 isolates studied (A/Hamburg/05/09 and A/Hamburg/NY1580/09) were low pathogenic in BALB/c mice [log mouse lethal dose 50 (MLD50) >6 plaque-forming units (PFU)] but displayed remarkable differences in virulence in C57BL/6J mice. A/Hamburg/NY1580/09 was more virulent (logMLD50 = 3.5 PFU) than A/Hamburg/05/09 (logMLD50 = 5.2 PFU) in C57BL/6J mice. In contrast, the H5N1 influenza virus was more virulent in BALB/c mice (logMLD50 = 0.3 PFU) than in C57BL/6J mice (logMLD50 = 1.8 PFU). Seasonal H1N1 influenza revealed marginal pathogenicity in BALB/c or C57BL/6J mice (logMLD50 >6 PFU). Enhanced susceptibility of C57BL/6J mice to pandemic H1N1 correlated with a depressed cytokine response. In contrast, enhanced H5N1 virulence in BALB/c mice correlated with an elevated proinflammatory cytokine response. These findings highlight that host determinants responsible for the pathogenesis of 2009 pandemic H1N1 influenza viruses are different from those contributing to H5N1 pathogenesis. Our results show, for the first time to our knowledge, that the C57BL/6J mouse strain is more appropriate for the evaluation and identification of intrinsic pathogenicity markers of 2009 pandemic H1N1 influenza viruses that are "masked" in BALB/c mice

    Difficulties in diagnosis of SARS-CoV-2 myocarditis in an adolescent

    Full text link
    OBJECTIVES We present an adolescent with cardiogenic shock due to ventricular tachycardia 2 weeks after SARS-CoV-2 infection. Acute myocarditis or myocardial dysfunction is associated with SARS-CoV-2 infection, but diagnosis may be difficult, even including endomyocardial biopsy. CASE REPORT A 15-year-old healthy adolescent was admitted to our hospital 2 weeks after SARS-CoV-2 infection with cardiogenic shock due to ventricular tachycardia. After cardioversion, antiarrhythmic treatment, ventilation, and inotropic support, the severely reduced myocardial function recovered completely within 2 weeks. Cardiac magnetic resonance imaging and cardiac catheterisation including right ventricular endomyocardial biopsy revealed an increased number of CD68+ macrophages in the myocardium, but nested (RT-) polymerase chain reaction (PCR) investigations revealed no viral or bacterial DNA/RNA. DISCUSSION SARS-CoV-2 infection may be associated with myocarditis leading to life-threatening arrhythmia and severe myocardial systolic and diastolic dysfunction, which may be short lasting and completely recover. Although former SARS-Cov-2 infection might suggest SARS-CoV-2-associated myocarditis, definite histological diagnosis including nested PCR investigations remains difficult

    Cell Specific Coxsackievirus B3 Replication

    Get PDF
    Myocarditis is an inflammatory disease caused by viral infection. Different subpopulations of leukocytes enter the cardiac tissue and lead to severe cardiac inflammation associated with myocyte loss and remodeling. Here, we study possible cell sources for viral replication using three compartments of the heart: fibroblasts, cardiomyocytes, and macrophages. We infected C57BL/6j mice with Coxsackievirus B3 (CVB3) and detected increased gene expression of anti-inflammatory and antiviral cytokines in the heart. Subsequently, we infected cardiac fibroblasts, cardiomyocytes, and macrophages with CVB3. Due to viral infection, the expression of TNF-α, IL-6, MCP-1, and IFN-β was significantly increased in cardiac fibroblasts compared to cardiomyocytes or macrophages. We found that in addition to cardiomyocytes cardiac fibroblasts were infected by CVB3 and displayed a higher virus replication (132-fold increase) compared to cardiomyocytes (14-fold increase) between 6 and 24 hours after infection. At higher virus concentrations, macrophages are able to reduce the viral copy number. At low virus concentration a persistent virus infection was determined. Therefore, we suggest that cardiac fibroblasts play an important role in the pathology of CVB3-induced myocarditis and are another important contributor of virus replication aggravating myocarditis

    ONX 0914 Lacks Selectivity for the Cardiac Immunoproteasome in CoxsackievirusB3 Myocarditis of NMRI Mice and Promotes Virus-Mediated Tissue Damage

    Get PDF
    Inhibition of proteasome function by small molecules is highly efficacious in cancer treatment. Other than non-selective proteasome inhibitors, immunoproteasome-specific inhibitors allow for specific targeting of the proteasome in immune cells and the profound anti-inflammatory potential of such compounds revealed implications for inflammatory scenarios. For pathogen-triggered inflammation, however, the efficacy of immunoproteasome inhibitors is controversial. In this study, we investigated how ONX 0914, an immunoproteasome-selective inhibitor, influences CoxsackievirusB3 infection in NMRI mice, resulting in the development of acute and chronic myocarditis, which is accompanied by formation of the immunoproteasome in heart tissue. In groups in which ONX 0914 treatment was initiated once viral cytotoxicity had emerged in the heart, ONX 0914 had no anti-inflammatory effect in the acute or chronic stages. ONX 0914 treatment initiated prior to infection, however, increased viral cytotoxicity in cardiomyocytes, promoting infiltration of myeloid immune cells into the heart. At this stage, ONX 0914 completely inhibited the β5 subunit of the standard cardiac proteasome and less efficiently blocked its immunoproteasome counterpart LMP7. In conclusion, ONX 0914 unselectively perturbs cardiac proteasome function in viral myocarditis of NMRI mice, reduces the capacity of the host to control the viral burden and promotes cardiac inflammation

    Using Multiparametric Cardiac Magnetic Resonance to Phenotype and Differentiate Biopsy-Proven Chronic from Healed Myocarditis and Dilated Cardiomyopathy.

    Get PDF
    (1) Objectives: To discriminate biopsy-proven myocarditis (chronic vs. healed myocarditis) and to differentiate from dilated cardiomyopathy (DCM) using cardiac magnetic resonance (CMR). (2) Methods: A total of 259 consecutive patients (age 51 ± 15 years; 28% female) who underwent both endomyocardial biopsy (EMB) and CMR in the years 2008-2021 were evaluated. According to right-ventricular EMB results, patients were divided into either chronic (n = 130, 50%) or healed lymphocytic myocarditis (n = 60, 23%) or DCM (n = 69, 27%). The CMR protocol included functional, strain, and late gadolinium enhancement (LGE) imaging, T2w imaging, and T2 mapping. (3) Results: Left-ventricular ejection fraction (LV-EF) was higher, and the indexed end-diastolic volume (EDV) was lower in myocarditis patients (chronic: 42%, median 96 mL/m²; healed: 49%, 86 mL/m²) compared to the DCM patients (31%, 120 mL/m²), p < 0.0001. Strain analysis demonstrated lower contractility in DCM patients vs. myocarditis patients, p < 0.0001. Myocarditis patients demonstrated a higher LGE prevalence (68% chronic; 59% healed) than the DCM patients (45%), p = 0.01. Chronic myocarditis patients showed a higher myocardial edema prevalence and ratio (59%, median 1.3) than healed myocarditis (23%, 1.3) and DCM patients (13%, 1.0), p < 0.0001. T2 mapping revealed elevated values more frequently in chronic (90%) than in healed (21%) myocarditis and DCM (23%), p < 0.0001. T2 mapping yielded an AUC of 0.89 (sensitivity 90%, specificity 76%) in the discrimination of chronic from healed myocarditis and an AUC of 0.92 (sensitivity 86%, specificity 91%) in the discrimination of chronic myocarditis from DCM, both p < 0.0001. (4) Conclusions: Multiparametric CMR imaging, including functional parameters, LGE and T2 mapping, may allow differentiation of chronic from healed myocarditis and DCM and therefore help to optimize patient management in this clinical setting

    The AP-1 transcription factor Fosl-2 regulates autophagy in cardiac fibroblasts during myocardial fibrogenesis

    Get PDF
    Background: Pathological activation of cardiac fibroblasts is a key step in development and progression of cardiac fibrosis and heart failure. This process has been associated with enhanced autophagocytosis, but molecular mechanisms remain largely unknown. Methods and Results: Immunohistochemical analysis of endomyocardial biopsies showed increased activation of autophagy in fibrotic hearts of patients with inflammatory cardiomyopathy. In vitro experiments using mouse and human cardiac fibroblasts confirmed that blockade of autophagy with Bafilomycin A1 inhibited fibroblast-to-myofibroblast transition induced by transforming growth factor (TGF)-β. Next, we observed that cardiac fibroblasts obtained from mice overexpressing transcription factor Fos-related antigen 2 (Fosl-2tg) expressed elevated protein levels of autophagy markers: the lipid modified form of microtubule-associated protein 1A/1B-light chain 3B (LC3BII), Beclin-1 and autophagy related 5 (Atg5). In complementary experiments, silencing of Fosl-2 with antisense GapmeR oligonucleotides suppressed production of type I collagen, myofibroblast marker alpha smooth muscle actin and autophagy marker Beclin-1 in cardiac fibroblasts. On the other hand, silencing of either LC3B or Beclin-1 reduced Fosl-2 levels in TGF-β-activated, but not in unstimulated cells. Using a cardiac hypertrophy model induced by continuous infusion of angiotensin II with osmotic minipumps, we confirmed that mice lacking either Fosl-2 (Ccl19CreFosl2flox/flox) or Atg5 (Ccl19CreAtg5flox/flox) in stromal cells were protected from cardiac fibrosis. Conclusion: Our findings demonstrate that Fosl-2 regulates autophagocytosis and the TGF-β-Fosl-2-autophagy axis controls differentiation of cardiac fibroblasts. These data provide a new insight for the development of pharmaceutical targets in cardiac fibrosis

    Lipid nanoparticle-encapsulated, chemically modified anti-adenoviral siRNAs inhibit hepatic adenovirus infection in immunosuppressed Syrian hamsters

    Get PDF
    RNA interference has demonstrated its potential as an antiviral therapy for treatment of human adenovirus (hAd) infections. The only existing viral vector-based system for delivery of anti-adenoviral artificial microRNAs available for in vivo use, however, has proven to be inefficient in therapeutic applications. In this study, we investigated the potential of stabilized small interfering RNA (siRNA) encapsulated in lipid nanoparticles (LNPs) for treatment of hepatic hAd serotype 5 (hAd5) infection in an hAd infection model using immunosuppressed Syrian hamsters. The siRNA sipTPmod directed against the adenoviral pre-terminal protein (pTP) and containing 2′-O-methyl modifications as well as phosphorothioate linkages effectively inhibited hAd5 infection in vitro. In light of this success, sipTPmod was encapsulated in LNPs containing the cationic lipid XL-10, which enables hepatocyte-specific siRNA transfer, and injected intravenously into hAd5-infected immunosuppressed Syrian hamsters. This resulted in a significant reduction of liver hAd5 titers, a trend toward reduced liver injury and inflammation, and reduction of viral titers in the blood and spleen compared with hAd5-infected animals that received a non-silencing siRNA. These effects were demonstrated in animals infected with low and moderate doses of hAd5. These data demonstrate that hepatic hAd5 infection can be successfully treated with anti-adenoviral sipTPmod encapsulated in LNPs

    Case Report First-in-Man Method Description: Left Ventricular Unloading With iVAC2L During Veno-Arterial Extracorporeal Membrane Oxygenation: From Veno-Arterial Extracorporeal Membrane Oxygenation to ECMELLA to EC-iVAC®

    Get PDF
    Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is increasingly used in bi-ventricular failure with cardiogenic shock to maintain systemic perfusion. Nonetheless, it tends to increase left ventricular (LV) afterload and myocardial oxygen demand. In order to mitigate these negative effects on the myocardium, an Impella CP® (3.5 L/min Cardiac Output) can be used in conjunction with V-A ECMO (ECMELLA approach). We implemented this strategy in a patient with severe acute myocarditis complicated by cardiogenic shock. Due to a hemolysis crisis, Impella CP® had to be substituted with PulseCath iVAC2L®, which applies pulsatile flow to unload the LV. A subsequent improvement in LV systolic function was noted, with increased LV ejection fraction (LVEF), LV end-diastolic diameter (LVEDD) reduction, and a reduction in plasma free hemoglobin. This case documents the efficacy of iVAC2L in replacing Impella CP as a LV vent during V-A ECMO, with less hemolysis
    • …
    corecore