70 research outputs found

    Evolution of Antarctic ozone in September-December predicted by CCMVal-2 model simulations for the 21st century

    Get PDF
    Chemistry-Climate Model Validation phase 2 (CCMVal-2) model simulations are used to analyze Antarctic ozone increases in 2000–2100 during local spring and early summer, both vertically integrated and at several pressure levels in the lower stratosphere. Multi-model median trends of monthly zonal mean total ozone column (TOC), ozone volume mixing ratio (VMR), wind speed and temperature poleward of 60° S are investigated. Median values are used to account for large variability in models, and the associated uncertainty is calculated using a bootstrapping technique. According to the trend derived from the twelve CCMVal-2 models selected, Antarctic TOC will not return to a 1965 baseline, an average of 1960–1969 values, by the end of the 21st century in September–November, but will return in ~2080 in December. The speed of December ozone depletion before 2000 was slower compared to spring months, and thus the decadal rate of December TOC increase after 2000 is also slower. Projected trends in December ozone VMR at 20–100 hPa show a much slower rate of ozone recovery, particularly at 50–70 hPa, than for spring months. Trends in temperature and winds at 20–150 hPa are also analyzed in order to attribute the projected slow increase of December ozone and to investigate future changes in the Antarctic atmosphere in general, including some aspects of the polar vortex breakup.J. M. Siddaway, S. V. Petelina, D. J. Karoly, A. R. Klekociuk, and R. J. Dargavill

    Evaluation of the ACCESS - Chemistry-climate model for the Southern Hemisphere

    Get PDF
    Published: 29 February 2016Chemistry–climate models are important tools for addressing interactions of composition and climate in the Earth system. In particular, they are used to assess the combined roles of greenhouse gases and ozone in Southern Hemisphere climate and weather. Here we present an evaluation of the Australian Community Climate and Earth System Simulator – chemistry–climate model (ACCESS-CCM), focusing on the Southern Hemisphere and the Australian region. This model is used for the Australian contribution to the international Chemistry–Climate Model Initiative, which is soliciting hindcast, future projection and sensitivity simulations. The model simulates global total column ozone (TCO) distributions accurately, with a slight delay in the onset and recovery of springtime Antarctic ozone depletion, and consistently higher ozone values. However, October-averaged Antarctic TCO from 1960 to 2010 shows a similar amount of depletion compared to observations. Comparison with model precursors shows large improvements in the representation of the Southern Hemisphere stratosphere, especially in TCO concentrations. A significant innovation is seen in the evaluation of simulated vertical profiles of ozone and temperature with ozonesonde data from Australia, New Zealand and Antarctica from 38 to 90° S. Excess ozone concentrations (greater than 26 % at Davis and the South Pole during winter) and stratospheric cold biases (up to 10 K at the South Pole during summer and autumn) outside the period of perturbed springtime ozone depletion are seen during all seasons compared to ozonesondes. A disparity in the vertical location of ozone depletion is seen: centred around 100 hPa in ozonesonde data compared to above 50hPa in the model. Analysis of vertical chlorine monoxide profiles indicates that colder Antarctic stratospheric temperatures (possibly due to reduced mid-latitude heat flux) are artificially enhancing polar stratospheric cloud formation at high altitudes. The model's inability to explicitly simulate a supercooled ternary solution may also explain the lack of depletion at lower altitudes. Analysis of the simulated Southern Annular Mode (SAM) index compares well with ERA-Interim data, an important metric for correct representation of Australian climate. Accompanying these modulations of the SAM, 50 hPa zonal wind differences between 2001–2010 and 1979–1998 show increasing zonal wind strength southward of 60° S during December for both the model simulations and ERA-Interim data. These model diagnostics show that the model reasonably captures the stratospheric ozone-driven chemistry–climate interactions important for Australian climate and weather while highlighting areas for future model development.Kane A. Stone, Olaf Morgenstern, David J. Karoly, Andrew R. Klekociuk, W. John French, N. Luke Abraham, and Robyn Schofiel

    Extreme events as ecosystems drivers: Ecological consequences of anomalous Southern Hemisphere weather patterns during the 2001/2002 austral spring-summer

    Get PDF
    The frequency and severity of extreme events associated with global change are both forecast to increase with a concomitant increase expected in perturbations and disruptions of fundamental processes at ecosystem, community and population scales, with potentially catastrophic consequences. Extreme events should thus be viewed as ecosystem drivers, rather than as short term deviations from a perceived ‘norm’. To illustrate this, we examined the impacts associated with the extraordinary weather pattern of the austral spring/summer of 2001/2002, and find that patterns of ocean-atmosphere interactions appear linked to a suite of extreme events in Antarctica and more widely across the Southern Hemisphere. In the Antarctic, the extreme events appear related to particular ecological impacts, including the substantial reduction in breeding success of Adélie penguins at sites in the Antarctic Peninsula as well as for Adélie penguin and snow petrel colonies in East Antarctica, and the creation of new benthic habitats associated with the disintegration of the Larsen B Ice Shelf. Other major impacts occurred in marine and terrestrial ecosystems at temperate and tropical latitudes. The suite of impacts demonstrates that ecological consequences of extreme events are manifested at fundamental levels in ecosystem processes and produce long-term, persistent effects relative to the short-term durations of the events. Changes in the rates of primary productivity, species mortality, community structure and inter-specific interactions, and changes in trophodynamics were observed as a consequence of the conditions during the 2001/2002 summer. Lasting potential consequences include reaching or exceeding tipping points, trophic cascades and regime shifts

    The Antarctic ozone hole during 2014

    Get PDF
    We review the 2014 Antarctic ozone hole, making use of a variety of ground-based and space-based measurements of ozone and ultra-violet radiation, supplemented by meteorological reanalyses. Although the polar vortex was relatively stable in 2014 and persisted some weeks longer into November than was the case in 2012 or 2013, the vortex temperature was close to the long-term mean in September and October with modest warming events occurring in both months, preventing severe depletion from taking place. Of the seven metrics reported here, all were close to their respective median values of the 1979–2014 record, being ranked between 16th and 21st of the 35 years for which adequate satellite observations exist

    The Antarctic ozone hole during 2015 and 2016

    Get PDF
    We reviewed the 2015 and 2016 Antarctic ozone holes, making use of a variety of ground-based and spacebased measurements of ozone and ultraviolet radiation, supplemented by meteorological reanalyses. The ozone hole of 2015 was one of the most severe on record with respect to maximum area and integrated deficit and was notably longlasting, with many values above previous extremes in October, November and December. In contrast, all assessed metrics for the 2016 ozone hole were at or below their median values for the 37 ozone holes since 1979 for which adequate satellite observations exist. The 2015 ozone hole was influenced both by very cold conditions and enhanced ozone depletion caused by stratospheric aerosol resulting from the April 2015 volcanic eruption of Calbuco (Chile)
    • …
    corecore