15 research outputs found

    Streptococcus mutans由来デキストラン関連酵素の構造と機能に関する研究 [全文の要約]

    No full text
    Streptococcus mutansは、う蝕形成に関わる口内細菌として知られ、菌体外にデキストラン様の多糖を生産することがその要因の1つである。一方、本糖質は当該細菌にとり貯蔵多糖と理解できるので、デキストランを分解する酵素を産する。従って、デキストラン分解酵素の研究は興味深く、特に触媒作用の分子機構を明らかにすることは極めて重要である。我々は、既にエンド型デキストラナーゼ(DEXaseと略; デキストランをランダムに加水分解する酵素)およびデキストラン・グルコシダーゼ[DGaseと略; デキストランやイソマルトオリゴ糖(α-1,6結合のグルコース残基から成るオリゴ糖)を非還元末端からエキソ型に加水分解する酵素] の2酵素についてX線結晶構造解析に成功した。本研究では、それらの立体構造を基に分子機構の解析を試みた。その結果、DEXaseでは生成物特異性を制御する構造因子を解明でき、DGaseは基質認識に重要な構造因子を明らかにした。また、オリゴ-1,6-グルコシダーゼ(O16Gaseと略)はイソマルトオリゴ糖を非還元末端からエキソ型に加水分解するが、O16Gaseと保存性が高い酵素タンパク質をコードする遺伝子をS.mutansのゲノム中に見出した。本タンパク質の機能を解明するために当該遺伝子の異種宿主発現を行うとともに、基質認識機構を調べた。なお、DGaseとO16Gaseは類似したエキソ型分解反応を触媒するが、両者の相違はDGaseが長鎖オリゴ糖に高い作用を示すのに対し、O16Gaseは短鎖オリゴ糖を好む点にある。この博士論文全文の閲覧方法については、以下のサイトをご参照ください。https://www.lib.hokudai.ac.jp/dissertations/copy-guides

    Effects of mutation of Asn694 in Aspergillus niger α-glucosidase on hydrolysis and transglucosylation

    Get PDF
    Aspergillus niger α-glucosidase (ANG), a member of glycoside hydrolase family 31, catalyzes hydrolysis of alpha-glucosidic linkages at the non-reducing end. In the presence of high concentrations of maltose, the enzyme also catalyzes the formation of α-(1 -> 6)-glucosyl products by transglucosylation and it is used for production of the industrially useful panose and isomaltooligosaccharides. The initial transglucosylation by wild-type ANG in the presence of 100 mM maltose [Glc(α 1-4)Glc] yields both α-(1 -> 6)- and α-(1 -> 4)-glucosidic linkages, the latter constituting similar to 25% of the total transfer reaction product. The maltotriose [Glc(α 1-4)Glc(α 1-4)Glc], α-(1 -> 4)-glucosyl product disappears quickly, whereas the α-(1 -> 6)-glucosyl products panose [Glc(α 1-6)Glc(α 1-4)Glc], isomaltose [Glc(α 1-6)Glc], and isomaltotriose [Glc(α 1-6)Glc(α 1-6)Glc] accumulate. To modify the transglucosylation properties of ANG, residue Asn694, which was predicted to be involved in formation of the plus subsites of ANG, was replaced with Ala, Leu, Phe, and Trp. Except for N694A, the mutations enhanced the initial velocity of the α-(1 -> 4)-transfer reaction to produce maltotriose, which was then degraded at a rate similar to that by wild-type ANG. With increasing reaction time, N694F and N694W mutations led to the accumulation of larger amounts of isomaltose and isomaltotriose than achieved with the wild-type enzyme. In the final stage of the reaction, the major product was panose (N694A and N694L) or isomaltose (N694F and N694W)

    Engineered dextranase from Streptococcus mutans enhances the production of longer isomaltooligosaccharides

    Get PDF
    Herein, we investigated enzymatic properties and reaction specificities of Streptococcus mutans dextranase, which hydrolyzes α-(1→6)-glucosidic linkages in dextran to produce isomaltooligosaccharides. Reaction specificities of wild-type dextranase and its mutant derivatives were examined using dextran and a series of enzymatically prepared p-nitrophenyl α-isomaltooligosaccharides. In experiments with 4-mg·mL⁻¹ dextran, isomaltooligosaccharides with degrees of polymerization (DP) of 3 and 4 were present at the beginning of the reaction, and glucose and isomaltose were produced by the end of the reaction. Increased concentrations of the substrate dextran (40 mg·mL⁻¹) yielded isomaltooligosaccharides with higher DP, and the mutations T558H, W279A/T563N, and W279F/T563N at the -3 and -4 subsites affected hydrolytic activities of the enzyme, likely reflecting decreases in substrate affinity at the -4 subsite. In particular, T558H increased the proportion of isomaltooligosaccharide with DP of 5 in hydrolysates following reactions with 4-mg·mL⁻¹ dextran.Abbreviations CI: cycloisomaltooligosaccharide; CITase: CI glucanotransferase; CITase-Bc: CITase from Bacillus circulans T-3040; DP: degree of polymerization of glucose unit; GH: glycoside hydrolase family; GTF: glucansucrase; HPAEC-PAD: high performance anion-exchange chromatography-pulsed amperometric detection; IG: isomaltooligosaccharide; IGn: IG with DP of n (n, 2‒5); PNP: p-nitrophenol; PNP-Glc: p-nitrophenyl α-glucoside; PNP-IG: p-nitrophenyl isomaltooligosaccharide; PNP-IGn: PNP-IG with DP of n (n, 2‒6); SmDex: dextranase from Streptococcus mutans; SmDexTM: S. mutans ATCC25175 SmDex bearing Gln100‒Ile732

    Efficient synthesis of α-galactosyl oligosaccharides using a mutant Bacteroides thetaiotaomicron retaining α-galactosidase (BtGH97b)

    Get PDF
    The preparation of a glycosynthase, a catalytic nucleophile mutant of a glycosidase, is a well-established strategy for the effective synthesis of glycosidic linkages. However, glycosynthases derived from alpha-glycosidases can give poor yields of desired products because they require generally unstable beta-glycosyl fluoride donors. Here, we investigate a transglycosylation catalyzed by a catalytic nucleophile mutant derived from a glycoside hydrolase family (GH) 97 alpha-galactosidase, using more stable beta-galactosyl azide and alpha-galactosyl fluoride donors. The mutant enzyme catalyzes the glycosynthase reaction using beta-galactosyl azide and alpha-galactosyl transfer from alpha-galactosyl fluoride with assistance of external anions. Formate was more effective at restoring transfer activity than azide. Kinetic analysis suggests that poor transglycosylation in the presence of the azide is because of low activity of the ternary complex between enzyme, beta-galactosyl azide and acceptor. A three-dimensional structure of the mutant enzyme in complex with the transglycosylation product, beta-lactosyl alpha-D-galactoside, was solved to elucidate the ligand-binding aspects of the alpha-galactosidase. Subtle differences at the beta ->alpha loops 1, 2 and 3 of the catalytic TIM barrel of the alpha-galactosidase from those of a homologous GH97 alpha-glucoside hydrolase seem to be involved in substrate recognitions. In particular, the Trp residues in beta ->alpha loop 1 have separate roles. Trp312 of the alpha-galactosidase appears to exclude the equatorial hydroxy group at C4 of glucosides, whereas the corresponding Trp residue in the alpha-glucoside hydrolase makes a hydrogen bond with this hydroxy group. The mechanism of alpha-galactoside recognition is conserved among GH27, 31, 36 and 97 alpha-galactosidases

    Substrate recognition of the catalytic α-subunit of glucosidase II from Schizosaccharomyces pombe

    Get PDF
    The recombinant catalytic alpha-subunit of N-glycan processing glucosidase II from Schizosaccharomyces pombe (SpGII alpha) was produced in Escherichia coli. The recombinant SpGII alpha exhibited quite low stability, with a reduction in activity to 3)-but also alpha-(1 -> 2)-, alpha-(1 -> 4)-, and alpha-(1 -> 6)-glucosidic linkages, and p-nitrophenyl alpha-glucoside. SpGII alpha displayed most catalytic properties of glucosidase II. Hydrolytic activity of the terminal alpha-glucosidic residue of Glc(2)Man(3)-Dansyl was faster than that of Glc(1)Man(3)-Dansyl. This catalytic alpha-subunit also removed terminal glucose residues from native N-glycans (Glc(2)Man(9)GlcNAc(2) and Glc(1)Man(9)GlcNAc(2)) although the activity was low

    A novel glycoside hydrolase family 97 enzyme: Bifunctional β-l-arabinopyranosidase/α-galactosidase from Bacteroides thetaiotaomicron

    Get PDF
    Glycoside hydrolase family 97 (GH97) is one of the most interesting glycosidase families, which contains inverting and retaining glycosidases. Currently, only two enzyme types, alpha-glucoside hydrolase and alpha-galactosidase, are registered in the carbohydrate active enzyme database as GH97 function-known proteins. To explore new specificities, BT3661 and BT3664, which have distinct amino acid sequences when compared with that of GH97 alpha-glucoside hydrolase and alpha-galactosidase, were characterized in this study. BT3664 was identified to be an alpha-galactosidase, whereas BT3661 exhibits hydrolytic activity toward both beta-L-arabinopyranoside and alpha-D-galactopyranoside, and thus we designate BT3661 as a beta-L-arabinopyranosidase/alpha-D-galactosidase. Since this is the first dual substrate specificity enzyme in GH97, we investigated the substrate recognition mechanism of BT3661 by determining its three-dimensional structure and based on this structural data generated a number of mutants to probe the enzymatic mechanism. Structural comparison shows that the active-site pocket of BT3661 is similar to GH97 alpha-galactosidase BT1871, but the environment around the hydroxymethyl group of the galactopyranoside is different. While BT1871 bears G1u361 to stabilize the hydroxy group of C6 through a hydrogen bond with its carboxy group, BT3661 has Asn338 at the equivalent position. Amino acid mutation analysis indicates that the length of the side chain at Asn338 is important for defining specificity of BT3661. The kcat/Km value for the hydrolysis of p-nitrophenyl alpha-galactoside decreases when Asn338 is substituted with Glu, whereas an increase is observed when the mutation is Ala. Interestingly, mutation of Asn338 to Ala reduces the kcat/Km value for hydrolysis of p-nitrophenyl beta-L-arabinopyranoside. (C) 2017 Published by Elsevier B.V
    corecore