3,146 research outputs found

    Optimal Rate of Direct Estimators in Systems of Ordinary Differential Equations Linear in Functions of the Parameters

    Get PDF
    Many processes in biology, chemistry, physics, medicine, and engineering are modeled by a system of differential equations. Such a system is usually characterized via unknown parameters and estimating their 'true' value is thus required. In this paper we focus on the quite common systems for which the derivatives of the states may be written as sums of products of a function of the states and a function of the parameters. For such a system linear in functions of the unknown parameters we present a necessary and sufficient condition for identifiability of the parameters. We develop an estimation approach that bypasses the heavy computational burden of numerical integration and avoids the estimation of system states derivatives, drawbacks from which many classic estimation methods suffer. We also suggest an experimental design for which smoothing can be circumvented. The optimal rate of the proposed estimators, i.e., their n\sqrt n-consistency, is proved and simulation results illustrate their excellent finite sample performance and compare it to other estimation approaches

    Efficient estimation of Banach parameters in semiparametric models

    Get PDF
    Consider a semiparametric model with a Euclidean parameter and an infinite-dimensional parameter, to be called a Banach parameter. Assume: (a) There exists an efficient estimator of the Euclidean parameter. (b) When the value of the Euclidean parameter is known, there exists an estimator of the Banach parameter, which depends on this value and is efficient within this restricted model. Substituting the efficient estimator of the Euclidean parameter for the value of this parameter in the estimator of the Banach parameter, one obtains an efficient estimator of the Banach parameter for the full semiparametric model with the Euclidean parameter unknown. This hereditary property of efficiency completes estimation in semiparametric models in which the Euclidean parameter has been estimated efficiently. Typically, estimation of both the Euclidean and the Banach parameter is necessary in order to describe the random phenomenon under study to a sufficient extent. Since efficient estimators are asymptotically linear, the above substitution method is a particular case of substituting asymptotically linear estimators of a Euclidean parameter into estimators that are asymptotically linear themselves and that depend on this Euclidean parameter. This more general substitution case is studied for its own sake as well, and a hereditary property for asymptotic linearity is proved.Comment: Published at http://dx.doi.org/10.1214/009053604000000913 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Discrete Spacings

    Full text link
    Consider a string of nn positions, i.e. a discrete string of length nn. Units of length kk are placed at random on this string in such a way that they do not overlap, and as often as possible, i.e. until all spacings between neighboring units have length less than kk. When centered and scaled by n−1/2n^{-1/2} the resulting numbers of spacings of length 1,2,...,k−11, 2,..., k-1 have simultaneously a limiting normal distribution as n→∞n\to\infty. This is proved by the classical method of moments.Comment: 14 page
    • …
    corecore