3,146 research outputs found
Optimal Rate of Direct Estimators in Systems of Ordinary Differential Equations Linear in Functions of the Parameters
Many processes in biology, chemistry, physics, medicine, and engineering are
modeled by a system of differential equations. Such a system is usually
characterized via unknown parameters and estimating their 'true' value is thus
required. In this paper we focus on the quite common systems for which the
derivatives of the states may be written as sums of products of a function of
the states and a function of the parameters.
For such a system linear in functions of the unknown parameters we present a
necessary and sufficient condition for identifiability of the parameters. We
develop an estimation approach that bypasses the heavy computational burden of
numerical integration and avoids the estimation of system states derivatives,
drawbacks from which many classic estimation methods suffer. We also suggest an
experimental design for which smoothing can be circumvented. The optimal rate
of the proposed estimators, i.e., their -consistency, is proved and
simulation results illustrate their excellent finite sample performance and
compare it to other estimation approaches
Efficient estimation of Banach parameters in semiparametric models
Consider a semiparametric model with a Euclidean parameter and an
infinite-dimensional parameter, to be called a Banach parameter. Assume: (a)
There exists an efficient estimator of the Euclidean parameter. (b) When the
value of the Euclidean parameter is known, there exists an estimator of the
Banach parameter, which depends on this value and is efficient within this
restricted model. Substituting the efficient estimator of the Euclidean
parameter for the value of this parameter in the estimator of the Banach
parameter, one obtains an efficient estimator of the Banach parameter for the
full semiparametric model with the Euclidean parameter unknown. This hereditary
property of efficiency completes estimation in semiparametric models in which
the Euclidean parameter has been estimated efficiently. Typically, estimation
of both the Euclidean and the Banach parameter is necessary in order to
describe the random phenomenon under study to a sufficient extent. Since
efficient estimators are asymptotically linear, the above substitution method
is a particular case of substituting asymptotically linear estimators of a
Euclidean parameter into estimators that are asymptotically linear themselves
and that depend on this Euclidean parameter. This more general substitution
case is studied for its own sake as well, and a hereditary property for
asymptotic linearity is proved.Comment: Published at http://dx.doi.org/10.1214/009053604000000913 in the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Discrete Spacings
Consider a string of positions, i.e. a discrete string of length .
Units of length are placed at random on this string in such a way that they
do not overlap, and as often as possible, i.e. until all spacings between
neighboring units have length less than . When centered and scaled by
the resulting numbers of spacings of length have
simultaneously a limiting normal distribution as . This is proved
by the classical method of moments.Comment: 14 page
- …