619 research outputs found
Current Views of Toll-Like Receptor Signaling Pathways
On microbial invasion, the host immediately evokes innate immune responses. Recent studies have demonstrated that Toll-like receptors (TLRs) play crucial roles in innate responses that lead not only to the clearance of pathogens but also to the efficient establishment of acquired immunity by directly detecting molecules from microbes. In terms of intracellular TLR-mediated signaling pathways, cytoplasmic adaptor molecules containing Toll/IL-1R (TIR) domains play important roles in inflammatory immune responses through the production of proinflammatory cytokines, nitric oxide, and type I interferon, and upregulation of costimulatory molecules. In this paper, we will describe our current understanding of the relationship between TLRs and their ligands derived from pathogens such as viruses, bacteria, fungi, and parasites. Moreover, we will review the historical and current literature to describe the mechanisms behind TLR-mediated activation of innate immune responses
Innate Immune Effectors in Mycobacterial Infection
Tuberculosis, which is caused by infection with Mycobacterium tuberculosis (Mtb), remains one of the major bacterial infections worldwide. Host defense against Mtb is mediated by a combination of innate and adaptive immune responses. In the last 15 years, the mechanisms for activation of innate immunity have been elucidated. Toll-like receptors (TLRs) have been revealed to be critical for the recognition of pathogenic microorganisms including mycobacteria. Subsequent studies further revealed that NOD-like receptors and C-type lectin receptors are responsible for the TLR-independent recognition of mycobacteria. Several molecules, such as active vitamin D3, secretary leukocyte protease inhibitor, and lipocalin 2, all of which are induced by TLR stimulation, have been shown to direct innate immune responses to mycobacteria. In addition, Irgm1-dependent autophagy has recently been demonstrated to eliminate intracellular mycobacteria. Thus, our understanding of the mechanisms for the innate immune response to mycobacteria is developing
The close relationship between decreases in extracellular GABA concentrations and increases in the incidence of hyperbaric oxygen-induced electrical discharge.
To elucidate the mechanism by which hyperbaric oxygen (HBO2) induces electrical discharge, changes in the extracellular concentrations of GABA and glutamate were measured every 5 min using a microdialysis technique in rats during a period of exposure to HBO2 (5 atm abs). Electrical discharge was observed at 28 +/- 4 min after the onset of exposure. Though the extracellular concentrations of glutamate remained unchanged, the extracellular GABA concentrations (pre-exposure level, 0.026 +/- 0.005 microM in dialysate) began to decrease 15 min after the onset of exposure and reached their lowest level (74 +/- 14%, 0.019 +/- 0.004 microM) at the time of appearance of the discharge. There was a close logistic relationship between extracellular GABA concentrations and the discharge incidence, and the extracellular concentrations of GABA causing electrical discharge in 50% of the animals were estimated to be 80% of the pre-exposure level. These results suggest a possible mechanism that HBO2 exposure-induced discharge is caused by the decrease in extracellular concentration of GABA.</p
The Excitement of Multiple Noradrenergic Cell Groups in the Rat Brain Related to Hyperbaric Oxygen Seizure
The mechanism of oxygen toxicity for central nervous system and hyperbaric oxygen (HBO) seizure has not been clarified. Noradrenergic cells in the brain may contribute to HBO seizure. In this study, we defined the activation of noradrenergic cells during HBO exposure by c-fos immunohistochemistry. Electroencephalogram electrodes were pre-implanted in all animals under general anesthesia. In HBO seizure animals, HBO was induced with 5 atm of 100% oxygen until manifestation of general tonic convulsion. HBO non-seizure animals were exposed to 25 min of HBO. Control animals were put in the chamber for 120 min without pressurization. All animals were processed for c-fos immunohistochemical staining. All animals in the HBO seizure group showed electrical discharge on EEG. In the immunohistochemistry, c-fos was increased in the A1, A2 and A6 cells of the HBO seizure group, and in the A2 and A6 cells of the HBO non-seizure group, yet was extremely low in all three cell types in the control group. These results suggest the participation of noradrenaline in HBO seizure, which can be explained by the early excitement of A1 cells due to their higher sensitivity to high blood pressure, hyperoxia, or by the post-seizure activation of all noradrenergic cells
The Inhibition of Lipase and Glucosidase Activities by Acacia Polyphenol
Acacia polyphenol (AP) extracted from the bark of the black wattle tree (Acacia mearnsii) is rich in unique catechin-like flavan-3-ols, such as robinetinidol and fisetinidol. In an in vitro study, we measured the inhibitory activity of AP on lipase and glucosidase. In addition, we evaluated the effects of AP on absorption of orally administered olive oil, glucose, maltose, sucrose and starch solution in mice. We found that AP concentration-dependently inhibited the activity of lipase, maltase and sucrase with an IC50 of 0.95, 0.22 and 0.60 mg ml−1, respectively. In ICR mice, olive oil was administered orally immediately after oral administration of AP solution, and plasma triglyceride concentration was measured. We found that AP significantly inhibited the rise in plasma triglyceride concentration after olive oil loading. AP also significantly inhibited the rise in plasma glucose concentration after maltose and sucrose loading, and this effect was more potent against maltose. AP also inhibited the rise in plasma glucose concentration after glucose loading and slightly inhibited it after starch loading. Our results suggest that AP inhibits lipase and glucosidase activities, which leads to a reduction in the intestinal absorption of lipids and carbohydrates
Essential Immunoregulatory Role for BCAP in B Cell Development and Function
BCAP was recently cloned as a binding molecule to phosphoinositide 3-kinase (PI3K). To investigate the role of BCAP, mutant mice deficient in BCAP were generated. While BCAP-deficient mice are viable, they have decreased numbers of mature B cells and B1 B cell deficiency. The mice produce lower titers of serum immunoglobulin (Ig)M and IgG3, and mount attenuated responses to T cell–independent type II antigen. Upon B cell receptor cross-linking, BCAP-deficient B cells exhibit reduced Ca2+ mobilization and poor proliferative responses. These findings demonstrate that BCAP plays a pivotal immunoregulatory role in B cell development and humoral immune responses
M. Novel magnetic behavior of multidimensional organic polymer synthesized by cycloaddition reaction
We report the magnetic properties of a novel organic polymer. The material gives the large saturation magnetization (0.15G/g) at room temperature. Electron spin resonance (ESR) revealed a ferrimagnetic character, i. e., the existence of "exchange resonance branch" with extremely large g-value. The new organic polymer with large saturation magnetization can be stoichiometrically and reproducibly synthesized under ambient conditions and expected to be useful for practical applications
Conditional gene ablation of Stat3 reveals differential signaling requirements for survival of motoneurons during development and after nerve injury in the adult
Members of the ciliary neurotrophic factor (CNTF)/leukemia inhibitory factor (LIF)/cardiotrophin gene family are potent survival factors for embryonic and lesioned motoneurons. These factors act via receptor complexes involving gp130 and LIFR-β and ligand binding leads to activation of various signaling pathways, including phosphorylation of Stat3. The role of Stat3 in neuronal survival was investigated in mice by Cre-mediated gene ablation in motoneurons. Cre is expressed under the neurofilament light chain (NF-L) promoter, starting around E12 when these neurons become dependent on neurotrophic support. Loss of motoneurons during the embryonic period of naturally occurring cell death is not enhanced in NF-L–Cre; Stat3flox/KO mice although motoneurons isolated from these mice need higher concentrations of CNTF for maximal survival in culture. In contrast, motoneuron survival is significantly reduced after facial nerve lesion in the adult. These neurons, however, can be rescued by the addition of neurotrophic factors, including CNTF. Stat3 is essential for upregulation of Reg-2 and Bcl-xl expression in lesioned motoneurons. Our data show that Stat3 activation plays an essential role for motoneuron survival after nerve lesion in postnatal life but not during embryonic development, indicating that signaling requirements for motoneuron survival change during maturation
- …