6 research outputs found

    GermEval 2014 Named Entity Recognition Shared Task: Companion Paper

    Get PDF
    This paper describes the GermEval 2014 Named Entity Recognition (NER) Shared Task workshop at KONVENS. It provides background information on the motivation of this task, the data-set, the evaluation method, and an overview of the participating systems, followed by a discussion of their results. In contrast to previous NER tasks, the GermEval 2014 edition uses an extended tagset to account for derivatives of names and tokens that contain name parts. Further, nested named entities had to be predicted, i.e. names that contain other names. The eleven participating teams employed a wide range of techniques in their systems. The most successful systems used state-of-the- art machine learning methods, combined with some knowledge-based features in hybrid systems

    Predictability of Distributional Semantics in Derivational Word Formation

    No full text
    Compositional distributional semantic models (CDSMs) have successfully been applied to the task of predicting the meaning of a range of linguistic constructions. Their performance on semi-compositional word formation process of (morphological) derivation, however, has been extremely variable, with no large-scale empirical investigation to date. This paper fills that gap, performing an analysis of CDSM predictions on a large dataset (over 30,000 German derivationally related word pairs). We use linear regression models to analyze CDSM performance and obtain insights into the linguistic factors that influence how predictable the distributional context of a derived word is going to be. We identify various such factors, notably part of speech, argument structure, and semantic regularity

    GermEval 2014 Named Entity Recognition Shared Task: Companion Paper

    No full text
    This paper describes the GermEval 2014 Named Entity Recognition (NER) Shared Task workshop at KONVENS. It provides background information on the motivation of this task, the data-set, the evaluation method, and an overview of the participating systems, followed by a discussion of their results. In contrast to previous NER tasks, the GermEval 2014 edition uses an extended tagset to account for derivatives of names and tokens that contain name parts. Further, nested named entities had to be predicted, i.e. names that contain other names. The eleven participating teams employed a wide range of techniques in their systems. The most successful systems used state-of-the- art machine learning methods, combined with some knowledge-based features in hybrid systems
    corecore