53 research outputs found

    Global expression profiling in leaves of free-growing aspen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic studies are routinely performed on young plants in controlled environments which is very different from natural conditions. In reality plants in temperate countries are exposed to large fluctuations in environmental conditions, in the case of perennials over several years. We have studied gene expression in leaves of a free-growing aspen (<it>Populus tremula</it>) throughout multiple growing seasons</p> <p>Results</p> <p>We show that gene expression during the first month of leaf development was largely determined by a developmental program although leaf expansion, chlorophyll accumulation and the speed of progression through this program was regulated by the temperature. We were also able to define "transcriptional signatures" for four different substages of leaf development. In mature leaves, weather factors were important for gene regulation.</p> <p>Conclusion</p> <p>This study shows that multivariate methods together with high throughput transcriptional methods in the field can provide additional, novel information as to plant status under changing environmental conditions that is impossible to mimic in laboratory conditions. We have generated a dataset that could be used to e.g. identify marker genes for certain developmental stages or treatments, as well as to assess natural variation in gene expression.</p

    In vitro impact of platinum nanoparticles on inner ear related cell culture models

    Get PDF
    So far, it was supposed that the increase of electrical impedance following cochlear implant (CI) insertion was due to technical defects of the electrode, inflammatory and/or formation of scar tissue along the electrode. However, it was recently reported that corrosion of the platinum electrode contacts may be the reason for high impedances. It could be shown that platinum particles were stripped from the electrode surfaces. Its potential cytotoxic effects within the inner ear remains to be examined. In this study in vitro cell culture models of the mouse organ of Corti cell line (HEI-OC1) and the spiral ganglion (SG) cells derived from the cochleae neonatal rats were used to investigate the effects of the polyvinylpyrrolidone coated platinum nanoparticles (Pt-NPPVP, 3 nm) on cell metabolism, neuronal survival and neurite outgrowth. Our data revealed no decrease of the metabolic activity of the HEI-OC1 cells at Pt-NPPVP concentrations between 50-150 μg/ml. Also, staining with Calcein AM/ EthD demonstrated prevalent presence of vital cells. As shown by transmission electron microscopy no Pt-NPPVP could be found at the cell surface or in the cytosol of the HEI-OC1 cells. Similarly, the SG cells exposed to 20-100 μg/ml Pt-NPPVP did not show any reduced survival rate and neurite outgrowth following staining of the neurofilament antigen even at the highest Pt-NPPVP concentration. Although the SG cells were exposed to Pt-NPPVP for further 72 h and 96 h immunocytochemical staining of the glial cells and fibroblasts presented normal cell morphology and growth independently of the cultivation period. Our data indicates that the used Pt-NPPVP do not trigger the cellular uptake and, thus, presumable do not initiate apoptotic pathways in cells of the organ of Corti cell line or the auditory nerve. The protection mechanisms to the Pt-NPPVP interactions remain to be clarified

    Spatial and Temporal Profiles of Growth Factor Expression during CNS Demyelination Reveal the Dynamics of Repair Priming

    Get PDF
    Demyelination is the cause of disability in various neurological disorders. It is therefore crucial to understand the molecular regulation of oligodendrocytes, the myelin forming cells in the CNS. Growth factors are known to be essential for the development and maintenance of oligodendrocytes and are involved in the regulation of glial responses in various pathological conditions. We employed the well established murine cuprizone model of toxic demyelination to analyze the expression of 13 growth factors in the CNS during de- and remyelination. The temporal mRNA expression profile during demyelination and the subsequent remyelination were analyzed separately in the corpus callosum and cerebral cortex using laser microdissection and real-time PCR techniques. During demyelination a similar pattern of growth factor mRNA expression was observed in both areas with a strong up-regulation of NRG1 and GDNF and a slight increase of CNTF in the first week of cuprizone treatment. HGF, FGF-2, LIF, IGF-I, and TGF-ß1 were up-regulated mainly during peak demyelination. In contrast, during remyelination there were regional differences in growth factor mRNA expression levels. GDNF, CNTF, HGF, FGF-2, and BDNF were elevated in the corpus callosum but not in the cortex, suggesting tissue differences in the molecular regulation of remyelination in the white and grey matter. To clarify the cellular source we isolated microglia from the cuprizone lesions. GDNF, IGF-1, and FGF mRNA were detected in the microglial fraction with a temporal pattern corresponding to that from whole tissue PCR. In addition, immunohistochemical analysis revealed IGF-1 protein expression also in the reactive astrocytes. CNTF was located in astrocytes. This study identified seven different temporal expression patterns for growth factors in white and grey matter and demonstrated the importance of early tissue priming and exact orchestration of different steps during callosal and cortical de- and remyelination

    A transcriptional timetable of autumn senescence

    Get PDF
    BACKGROUND: We have developed genomic tools to allow the genus Populus (aspens and cottonwoods) to be exploited as a full-featured model for investigating fundamental aspects of tree biology. We have undertaken large-scale expressed sequence tag (EST) sequencing programs and created Populus microarrays with significant gene coverage. One of the important aspects of plant biology that cannot be studied in annual plants is the gene activity involved in the induction of autumn leaf senescence. RESULTS: On the basis of 36,354 Populus ESTs, obtained from seven cDNA libraries, we have created a DNA microarray consisting of 13,490 clones, spotted in duplicate. Of these clones, 12,376 (92%) were confirmed by resequencing and all sequences were annotated and functionally classified. Here we have used the microarray to study transcript abundance in leaves of a free-growing aspen tree (Populus tremula) in northern Sweden during natural autumn senescence. Of the 13,490 spotted clones, 3,792 represented genes with significant expression in all leaf samples from the seven studied dates. CONCLUSIONS: We observed a major shift in gene expression, coinciding with massive chlorophyll degradation, that reflected a shift from photosynthetic competence to energy generation by mitochondrial respiration, oxidation of fatty acids and nutrient mobilization. Autumn senescence had much in common with senescence in annual plants; for example many proteases were induced. We also found evidence for increased transcriptional activity before the appearance of visible signs of senescence, presumably preparing the leaf for degradation of its components

    Simulation and sensitivities for a phased IceCube-Gen2 deployment

    Get PDF

    Mechanical design of the optical modules intended for IceCube-Gen2

    Get PDF
    IceCube-Gen2 is an expansion of the IceCube neutrino observatory at the South Pole that aims to increase the sensitivity to high-energy neutrinos by an order of magnitude. To this end, about 10,000 new optical modules will be installed, instrumenting a fiducial volume of about 8 km3. Two newly developed optical module types increase IceCube’s current sensitivity per module by a factor of three by integrating 16 and 18 newly developed four-inch PMTs in specially designed 12.5-inch diameter pressure vessels. Both designs use conical silicone gel pads to optically couple the PMTs to the pressure vessel to increase photon collection efficiency. The outside portion of gel pads are pre-cast onto each PMT prior to integration, while the interiors are filled and cast after the PMT assemblies are installed in the pressure vessel via a pushing mechanism. This paper presents both the mechanical design, as well as the performance of prototype modules at high pressure (70 MPa) and low temperature (−40∘C), characteristic of the environment inside the South Pole ice

    A next-generation optical sensor for IceCube-Gen2

    Get PDF

    The next generation neutrino telescope: IceCube-Gen2

    Get PDF
    The IceCube Neutrino Observatory, a cubic-kilometer-scale neutrino detector at the geographic South Pole, has reached a number of milestones in the field of neutrino astrophysics: the discovery of a high-energy astrophysical neutrino flux, the temporal and directional correlation of neutrinos with a flaring blazar, and a steady emission of neutrinos from the direction of an active galaxy of a Seyfert II type and the Milky Way. The next generation neutrino telescope, IceCube-Gen2, currently under development, will consist of three essential components: an array of about 10,000 optical sensors, embedded within approximately 8 cubic kilometers of ice, for detecting neutrinos with energies of TeV and above, with a sensitivity five times greater than that of IceCube; a surface array with scintillation panels and radio antennas targeting air showers; and buried radio antennas distributed over an area of more than 400 square kilometers to significantly enhance the sensitivity of detecting neutrino sources beyond EeV. This contribution describes the design and status of IceCube-Gen2 and discusses the expected sensitivity from the simulations of the optical, surface, and radio components

    Sensitivity of IceCube-Gen2 to measure flavor composition of Astrophysical neutrinos

    Get PDF
    The observation of an astrophysical neutrino flux in IceCube and its detection capability to separate between the different neutrino flavors has led IceCube to constraint the flavor content of this flux. IceCube-Gen2 is the planned extension of the current IceCube detector, which will be about 8 times larger than the current instrumented volume. In this work, we study the sensitivity of IceCube-Gen2 to the astrophysical neutrino flavor composition and investigate its tau neutrino identification capabilities. We apply the IceCube analysis on a simulated IceCube-Gen2 dataset that mimics the High Energy Starting Event (HESE) classification. Reconstructions are performed using sensors that have 3 times higher quantum efficiency and isotropic angular acceptance compared to the current IceCube optical modules. We present the projected sensitivity for 10 years of data on constraining the flavor ratio of the astrophysical neutrino flux at Earth by IceCube-Gen2

    Estimating the coincidence rate between the optical and radio array of IceCube-Gen2

    Get PDF
    The IceCube-Gen2 Neutrino Observatory is proposed to extend the all-flavour energy range of IceCube beyond PeV energies. It will comprise two key components: I) An enlarged 8km3 in-ice optical Cherenkov array to measure the continuation of the IceCube astrophysical neutrino flux and improve IceCube\u27s point source sensitivity above ∼100TeV; and II) A very large in-ice radio array with a surface area of about 500km2. Radio waves propagate through ice with a kilometer-long attenuation length, hence a sparse radio array allows us to instrument a huge volume of ice to achieve a sufficient sensitivity to detect neutrinos with energies above tens of PeV. The different signal topologies for neutrino-induced events measured by the optical and in-ice radio detector - the radio detector is mostly sensitive to the cascades produced in the neutrino interaction, while the optical detector can detect long-ranging muon and tau leptons with high accuracy - yield highly complementary information. When detected in coincidence, these signals will allow us to reconstruct the neutrino energy and arrival direction with high fidelity. Furthermore, if events are detected in coincidence with a sufficient rate, they resemble the unique opportunity to study systematic uncertainties and to cross-calibrate both detector components
    corecore