34,088 research outputs found

    The traveling-wave V-antenna

    Get PDF
    Combination resonant V-antenna and traveling-wave dipole antenn

    The cylindrical antenna with non-reflecting resistive loading

    Get PDF
    Distribution of current along center-driven cylindrical antenna with variable internal impedance per unit lengt

    Late Miocene to early Pliocene stratigraphic record in northern Taranaki Basin: Condensed sedimentation ahead of Northern Graben extension and progradation of the modern continental margin

    Get PDF
    The middle Pliocene-Pleistocene progradation of the Giant Foresets Formation in Taranaki Basin built up the modern continental margin offshore from western North Island. The late Miocene to early Pliocene interval preceding this progradation was characterised in northern Taranaki Basin by the accumulation of hemipelagic mudstone (Manganui Formation), volcaniclastic sediments (Mohakatino Formation), and marl (Ariki Formation), all at bathyal depths. The Manganui Formation has generally featureless wireline log signatures and moderate to low amplitude seismic reflection characteristics. Mohakatino Formation is characterised by a sharp decrease in the GR log value at its base, a blocky GR log motif reflecting sandstone packets, and erratic resistivity logs. Seismic profiles show bold laterally continuous reflectors. The Ariki Formation has a distinctive barrel-shaped to blocky GR log motif. This signature is mirrored by the SP log and often by an increase in resistivity values through this interval. The Ariki Formation comprises (calcareous) marl made up of abundant planktic foraminifera, is 109 m thick in Ariki-1, and accumulated over parts of the Western Stable Platform and beneath the fill of the Northern Graben. It indicates condensed sedimentation reflecting the distance of the northern region from the contemporary continental margin to the south

    A study of image quality for radar image processing

    Get PDF
    Methods developed for image quality metrics are reviewed with focus on basic interpretation or recognition elements including: tone or color; shape; pattern; size; shadow; texture; site; association or context; and resolution. Seven metrics are believed to show promise as a way of characterizing the quality of an image: (1) the dynamic range of intensities in the displayed image; (2) the system signal-to-noise ratio; (3) the system spatial bandwidth or bandpass; (4) the system resolution or acutance; (5) the normalized-mean-square-error as a measure of geometric fidelity; (6) the perceptual mean square error; and (7) the radar threshold quality factor. Selective levels of degradation are being applied to simulated synthetic radar images to test the validity of these metrics

    A simple theory of dipole antennas

    Get PDF
    Simple and quantitatively accurate representation of current distribution in dipole antenna

    Glucose Tolerance in Lambs As Affected by Type of Ration

    Get PDF
    Metabolism of glucose is little understood in the ruminant animal. It has been demonstrated that little or no carbohydrate passes into the intestinal tract of adult ruminants on an all roughage ration (Heald 1951). Soluble carbohydrates of roughages are fermented to volatile fatty acids in the rumen. Available data show that 70% of total cellulose digestion occurs in the rumen and 30% in the cecum and large intestine with little or no cellulose digestion occurring in the small intestine (Hale, et al. 1947 and Gray 1951). The end products of cellulose digestion are the volatile fatty acids and not glucose. It has been estimated that up to 80% of the metabolizable energy of the feed is provided by the volatile fatty acids (McClymont, 1952). On an all roughage ration the source of blood glucose must, therefore, be from propionic acid which is liberally produced by rumen fermentation

    Nonlocality of Kohn-Sham exchange-correlation fields in dielectrics

    Full text link
    The theory of the macroscopic field appearing in the Kohn-Sham exchange-correlation potential for dielectric materials, as introduced by Gonze, Ghosez and Godby, is reexamined. It is shown that this Kohn-Sham field cannot be determined from a knowledge of the local state of the material (local crystal potential, electric field, and polarization) alone. Instead, it has an intrinsically nonlocal dependence on the global electrostatic configuration. For example, it vanishes in simple transverse configurations of a polarized dielectric, but not in longitudinal ones.Comment: 4 pages, two-column style with 2 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#dv_gg

    Progress in GaAs/CuInSe2 tandem junction solar cells

    Get PDF
    Much more power is required for spacecraft of the future than current vehicles. To meet this increased demand for power while simultaneously meeting other requirements for launch, deployment, and maneuverability, the development of higher-efficiency, lighter-weight, and more radiation resistant photovoltaic cells is essential. Mechanically stacked tandem junction solar cells based on (AlGaAs)GaAs thin film CLEFT (Cleavage of Lateral Epitaxial Film for Transfer) top cells and CuInSe2(CIS) thin film bottom cells are being developed to meet these power needs. The mechanically stacked tandem configuration is chosen due to its interconnect flexibility allowing more efficient array level performance. It also eliminates cell fabrication processing constraints associated with monolithically integrated multi-junction approaches, thus producing higher cell fabrication yields. The GaAs cell is used as the top cell due to its demonstrated high efficiency, and good radiation resistance. Furthermore, it offers a future potential for bandgap tuning using AlGaAs as the absorber to maximize cell performance. The CuInSe2 cell is used as the bottom cell due to superb radiation resistance, stability, and optimal bandgap value in combination with an AlGaAs top cell. Since both cells are incorporated as thin films, this approach provides a potential for very high specific power. This high specific power (W/kg), combined with high power density (W/sq m) resulting from the high efficiency of this approach, makes these cells ideally suited for various space applications
    corecore