39 research outputs found

    Bilinear Random Projections for Locality-Sensitive Binary Codes

    Full text link
    Locality-sensitive hashing (LSH) is a popular data-independent indexing method for approximate similarity search, where random projections followed by quantization hash the points from the database so as to ensure that the probability of collision is much higher for objects that are close to each other than for those that are far apart. Most of high-dimensional visual descriptors for images exhibit a natural matrix structure. When visual descriptors are represented by high-dimensional feature vectors and long binary codes are assigned, a random projection matrix requires expensive complexities in both space and time. In this paper we analyze a bilinear random projection method where feature matrices are transformed to binary codes by two smaller random projection matrices. We base our theoretical analysis on extending Raginsky and Lazebnik's result where random Fourier features are composed with random binary quantizers to form locality sensitive binary codes. To this end, we answer the following two questions: (1) whether a bilinear random projection also yields similarity-preserving binary codes; (2) whether a bilinear random projection yields performance gain or loss, compared to a large linear projection. Regarding the first question, we present upper and lower bounds on the expected Hamming distance between binary codes produced by bilinear random projections. In regards to the second question, we analyze the upper and lower bounds on covariance between two bits of binary codes, showing that the correlation between two bits is small. Numerical experiments on MNIST and Flickr45K datasets confirm the validity of our method.Comment: 11 pages, 23 figures, CVPR-201

    Investigating the effect of a raised cycle track, physical separation, land use and number of pedestrian on cyclists’ gaze behavior

    Get PDF
    Contemporary cities are home to an increasing number of cyclists. The gaze behavior of cyclists has an important impact upon cyclist safety and experience. Yet this behavior has not been studied to access its potential implications for urban design. This study aims to identify the eye-gaze pattern of cyclists and to examine its potential relationships with urban environmental characteristics, such as a raised cycle track, physical separation, land use, and number of pedestrian. This study measured and analyzed 40 cyclist’s gaze patterns using an eye tracker; the results were as follows. First, cyclists presented a T-shaped gaze pattern with two spots of frequent eye fixation points; the pattern suggests that it may benefit cyclists with greater safety and better readiness of road situation to avoid crashes. Second, more active horizontal gaze dispersion within the T-shaped gaze pattern was observed when participants cycled on a shared and non-raised bikeway. This indicates that there is a more suitable gaze behavior with different gaze limitations depending on the environmental characteristics. Therefore, bicycle facilities need to be constructed according to the consideration of the T-shaped gaze area and the change in cyclists’ gaze behavior in each environment to increase the effectiveness of bicycle facilities
    corecore