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Does large-sized cities’ urbanization predominantly degrade environmental 

resources in China? Relationships between urbanization and resources in 

the Changjiang Delta Region 

An outward expansion of urban lands in developing nations is often associated with a 

substantial loss of environmental resources such as forests, wetlands, freshwater, and 

cash crop fields. Yet, determining how different aspects of urbanization—such as city 

population size and the spread pattern of built-up lands—contribute to the cumulative 

loss of resources remains controversial. In this study, data sets were constructed 

describing changes to land cover across 65,200 grid cells at 1 km2 of spatial resolution 

for China’s Changjiang Delta Region over the past sixty years. The results showed that 

the region lost 12.2% of total resource sites. The distribution of resource degradation 

showed a highly dispersed pattern and was not confined to a few intense areas 

associated with large-sized cities. No empirical evidence was found that city population 

size alone accurately predicts the distribution of resource loss. Very large cities (N=4) 

contributed 35% of the total loss, demonstrating impacts similar to those of much more 

scattered towns (N=230). An urban expansion of large-sized cities may truly lead to an 

extensive resource loss. But a set of non-linear mechanisms, such as the diminishing 

effects of per-unit area urban spread on resources and interactions between urban 

patterns and the size of urban spread, also can play a significant role in downsizing the 

negative effects of large cities on resource sites. Thus, effective urban policies should 

carefully weigh the cumulative urban-spread mechanisms of both the large and small-

sized cities responsible for a spatially-dispersed degradation of environmental 

resources.  

Keywords: environmental resources; urbanization; land-cover change; urban patterns; 

Changjiang Delta Region; China 

Introduction 

Coastal regions’ fertile lands produce some 77% of global ecosystem services, such as food, 

water, climate control, and disaster prevention (Burke et al. 2001; Martínez et al. 2007). These 

regions also provide different-sized urban settlement for more than a third of the world’s 

population and within only 4% of the Earth’s total surface (UNEP 2006; World Bank 2010). 

 



 

 

Yet, in the face of large-scale urbanization, an outward expansion of urban lands is causing a 

substantial transformation of urban-rural fringe lands, especially in the coastal areas of 

predominantly rural nations like China. Although major Chinese cities took the first steps to 

protect land and water resources beginning with Shanghai in the 1980s (IOSG 2010), this 

does not indicate that all the remaining important sites have been safeguarded (Zhao et al. 

2006; Lin et al. 2010) and places a priority on investigating spatial and temporal variation in 

the cumulative resource loss generated by the expansion of urban lands. In short, several 

important questions remain. Is the rapid expansion of a few major cities predominantly 

responsible for a region’s loss of resources, or is resource loss a fundamentally dispersed 

process that involves a number of different-sized cities? What aspects of urbanization, such as 

city population size or certain quantitative components of urban spread, better explain the 

degradation? In approaching these questions, the impact of different-sized cities on resources 

was divided into two parts: (i) increases in urban land, or a ‘size factor’, and (ii) resource loss 

per-unit area of urban land, or an ‘efficiency factor’ of urban spread. 

The benefits of environmental resources near cities abound. For instance, food, water, 

wood, minerals, and by-products of urbanization, such as waste and pollutants, can be 

transported to and from cities at reduced time and cost. Flood control, water purification, 

climate regulation, and maintenance of species habitats can more directly benefit human 

settlements. Also, recreational amenities and cultural heritage sites located in proximity to 

cities tend to attract large crowds, generating measurable and non-measurable economic value 

(Forman 1995; MEA 2005; Li et al. 2010). In this study there was a focus on forestlands, 

freshwater sites, wetlands, and cash crop fields located in China’s lower Changjiang Delta 

Region. These resources were clearly discernible from classified remote-sensed imagery and 

were available from multiple sources of spatial data and from planning documents. All four 

resources occupied a significant portion of the study area (> 5%, respectively), and 



 

 

corresponded to international and local land-cover standards (Liu et al. 2002; Lillesand et al. 

2004). The four land types are referred to as “environmental resources,” defined as natural or 

human-modified land capital that produce valuable ecological services and environmental 

benefits (Dasgupta and Mäler 1995; Forman 2008).  

The Changjiang Delta Region covers 65,200 km2 of terrestrial land and 10,200 km2 of 

freshwater bodies, located at 30°06´–32°30´N and 118°39´–121°58´E and with the highest 

elevation at 1,587 m above sea level (Figure 1). It includes 16 regional-level cities, 30 county-

level cities and 1,730 towns, with a total of some 62 million household-registered inhabitants 

in 2005. The region is comprised of an alluvial flat land located in a transitional zone between 

the Changjiang (Yangtze River) and the East China Sea, large water bodies such as Taihu and 

Gehu Lakes, as well as mountainous regions in the Zhejiang and Anhui provinces. Some 

7,000 years ago, the deltaic land grew gradually seaward due to the accumulation of sediment 

trapped by the extensive flood plains, forming Shanghai’s eastern boundary in the early 

twentieth century (Sit 1998). Taihu Lake, China’s third-largest freshwater body, is located at 

the centre of the region, with some 55.3% of its watershed made up of lowlands less than 3 m 

above sea level (Sun & Mao 2008). Urban built-up land has expanded remarkably in the 

region, from approximately 804 km2 in the 1950s to 6,726 km2 in 2010. Between 1979 and 

2000, the rate of urban land expansion was fairly high at about 4.7% per year, which was 

faster than the annual urban population growth rate of 3.5% between 1985 and 2005 (author’s 

calculation for 16 regional-level cities in the region; CCSY). 

This paper attempts to make methodological advancements in the findings of previous 

studies (e.g. Wang et al. 2008), which were limited largely to the non-spatial, cross-sectional 

estimation of the delta region’s resource sites and its ecosystem service values. The spatial 

aspects of land-cover changes since 1950 were investigated by locating fine-scaled vector 

data points on a consistent coordinate system. Also included was the eastern part of Anhui 



 

 

Province, representing15.7% of the region’s total terrestrial lands, which has an extensive 

forest zone that was selected as one of China’s 33 priority conservation areas (Xie 2009). A 

regression method using stratified sampling was applied to determine influential urban 

aspects linked to resource degradation. However, non-physical effects of urbanization, such as 

air pollution or climatic change, were not included.  

Methods 

Time-series land-cover data sets were created for the years of 1950, 1979, 1990, 2000, and 

2010 based on multi-band remote-sensed images, high-resolution aerial photographs, and 

digitized historic and land-use planning maps. To identify seven standardized land-cover 

classes, including urban built-up land, agricultural land, rangeland, forest, water bodies, 

wetland, and barren land (Anderson et al. 1976), on-screen visual interpretation was carried 

out using Landsat Orthorectified Multispectral Scanner (MSS, 57 meter resolution, recorded 

in August 1979), Thematic Mapper (TM, 30 meter resolution, recorded in August 1989), and 

Enhanced Thematic Mapper Plus (ETM+, 30 meter resolution, recorded in July 2001) 

acquired from the U.S. Geological Survey (USGS) Earth Resources Observation and Science 

Center. Before analysis, these images were geometrically rectified, re-projected, and re-

sampled using ERDAS Imagine with a 100 meter resolution. A supervised classification of 

the maps was conducted using the maximum likelihood classifier in Multispec to produce 

consistent land-cover information. To complement partially missing information, over 200 

spatially referenced historic maps and aerial photographs (circa 1963 and 2010) were 

compiled, as well as some 100 urban planning reference maps published by local 

municipalities. Consultations were also held with four Chinese institutions in May and June of 

2011, including at Fudan University Historical Geography Institute, Tongji University 

College of Architecture and Urban Planning, Suzhou Bureau of Construction, and with the 



 

 

Segacn Real Estate Group in Changzhou. All data sets were georeferenced in ArcGIS to the 

Xian 1980 GK Zone 19 coordinate system. 

The distribution of environmental resources—forests, freshwater sites, cash crop fields, 

and wetlands—and the location of urban spread were mapped using the established database. 

The region’s land was subdivided into 1 km2 grid cells and a dominant land-cover type within 

each cell was recorded. The size of grid cells was chosen based on the coarse resolution of 

historic maps that were at best accurate within an approximately 0.5 km distance. Areas of 

forests were predominantly occupied by secondary evergreen-broadleaf and mixed deciduous 

forests (Xu et al. 2010). Freshwater sites included lakes (> 1 km2), rivers (> 100 m in width), 

aquaculture sites (> 1 km2), and the vegetated buffer (d = 1 km ~ 5 km) along the water 

bodies. Water bodies that were not open to any type of hydrological change were excluded. 

The vegetated buffer distances were chosen based on the slope of land and soil texture (d = 1 

km if slope < 2° and sandy soil; d = 5 km if slope > 5° and clay soil), according to the 

landscape ecology theory that a vegetated buffer prevents pollutants from entering streams 

and improves the in-stream processing of pollutants (Allan et al. 1997; Wang et al. 2001; 

Allan 2004). Cash crop fields included cotton, oil crops, linen, medicinal plants, and tobacco 

fields, which were digitized from GJDT (1993). Lastly, to identify the areas of wetlands, 

satellite maps, aerial photos, and recent GIS vector data of the 2000 Wetland Map of China 

created by Gong et al. (2010) were integrated. There was a wide variability in the accuracy of 

the region’s spatial data, given the scarcity of land-cover information before the 1980s and the 

difference in the resolution of the original references. In some instances, reference maps were 

used to supplement remote-sensed images, or land-cover information in 1950 was rounded 

based on 1970s’ data sets. In other cases, data accurate enough to rank as sound for the 

purpose of working estimates at a 100 m resolution (maps after 1979) and 1 km resolution 

(maps before 1979) were found. Once all data sets were vectorized, the locations of resource 



 

 

sites with urban spread sites were overlapped to illustrate cumulative resource loss by urban 

spread. To qualify as a resource site converted to urban land, the proportion of urban land 

within the cell must exceed all other types of land cover that used to dominate the cell.  

The spatial correlation between city size and resource loss was tested by using both a 

scaling-function formula suggested by Bettencourt et al. (2007) and a buffer-graph method. 

First, the scaling-function method uses population (Nt) as a measure of city size (at time t) that 

explains various urban indicators (Yt), expressed as Yt = Y0Nt
β. In our study, Yt was defined as 

a log of the area of resources lost to urban spread within a sample boundary. Second, the 

buffer-graph method calculates the percentage of resource areas lost to urban spread within 

multiple buffer rings drawn from city and town centres. The radii of buffers were 

incrementally increased by 500 m intervals until the buffer areas reached 100% of the 

region’s total lands. The four largest cities in the region (N=4: Shanghai, Wuxi, Nanjing, and 

Hangzhou), together with mid-sized cities (N=12: cities with population between 200,000-

500,000 in 2000), and much smaller towns (N=230: towns with population > 50,000 in 2000) 

were tested in this manner.  

Once a general relationship between city size and resource loss was investigated, 

stratified sampling of 94 sub-regions was conducted for multiple regression analyses. Two 

components of city-size effects—increases in urban spread (size factor) and pattern metrics of 

urban spread (efficiency factor)—were the main variables of interest related to the region’s 

resource loss, controlling for other variables such as soil groups. Stratified sampling is known 

to reduce the variance of its estimation when analyzing spatially non-homogeneous 

phenomena (Richards et al. 2000; Achard et al. 2002). Thus, sampling boundaries were drawn 

based on three criteria: (i) areas with a population density >= 1000 people per km2, measured 

based on Population Grid Data 2000 (grid size = 1 km by 1 km); (ii) areas surrounded by 

major geographic barriers like mountain ridges or large water bodies; and if delineating a 



 

 

boundary between two cities was difficult owing to the agglomeration of dense urban 

settlements, (iii) their relative population sizes were used to define their boundaries. Different 

population density criteria were tested for comparison, as the model outcomes could be 

sensitive to the specifications of the sample boundaries. Any density substantially larger than 

1000 people per km2 included only highly urbanized areas near urban districts; sample sub-

regions with a density lower than 1000 people per km2 covered too much rural land, which 

substantially limited the variation in resource loss (<< 10%). Consequently, a 1000 people per 

km2 definition was selected because it helped to include densely populated urban districts, 

adjacent urban settlements with heterogeneous land-cover patterns, and extended rural sites 

directly linked to dense urban settlements. This avoided the problem of ‘over-bounded’ or 

‘under-bounded’ sample boundaries. This density criterion was higher than Wolman’s 

comparable study (2005), since Chinese urban regions are far denser than the metropolitan 

regions of the United States. Samples less than 10 km from another sample boundary or 

without any significant land-cover changes were excluded. Using the selected samples, the 

following variables were measured: (i) the average percentage of resource sites lost to urban 

spread (dependent variable), (ii) the natural logarithm of total population in 2000 acquired 

from the University of Michigan China Data Center (2007) and total population growth ratio 

between 1997 and 2005 as a proxy for pressure on resources, (iii) increases in the number of 

cells with urban spread between 1950 and 2010, (iv) Moran’s coefficient (Moran’s I) for 

measuring degrees of clustering of urban spread, (v) urban characteristics such as the length 

of expressways, distances to major cities, the number of nearby towns, density of industrial 

enterprises, and per-capita GDP in 2010, and (vi) multiple geophysical variables such as soil 

groups (clay/silt/sand), average land slopes, the presence of timber and metal mining sites, 

land subsidence and flood. Tsai (2005) tested the validity of Moran’s I for measuring the 

relative clustering (or scattering) of urban forms, showing that the index could distinguish 



 

 

compact urban patterns from scattered forms. While Galster et al. (2001) proposed what is 

probably the most comprehensive sprawl index, it was not applicable to this study because its 

calculation was based on residential forms and the standardized parameter of the index did not 

offer direct interpretation. For Moran’s I, fixed distance bands of 3km were used where the z-

score of spatial clustering peaked. Stepwise multiple regression analyses were conducted with 

the backward elimination method (maximum P-value to retain the variables = 0.05). When all 

variables were tested for multicollinearity, urban spread and Moran’s I showed a correlation. 

However, they were not excluded in order to be inclusive of interaction effects of major 

variables on resource.  

 

Results 

A highly dispersed pattern of environmental resource loss 

The region lost some 12.2% of total environmental resource sites between 1950 and 2010 (the 

total number of resource cells decreased from 45,817 to 40,211 as shown in Table 1). Forests 

decreased by 13.6%, freshwater sites by 13.3%, cash crop fields by 9.8%, and wetlands by 

7.9% (Figure 1). [Figure 1 near here] The cumulative losses showed a highly dispersed 

pattern across the region, rather than being confined to a few major areas of intensity near 

large-sized cities. The buffer-graph method showed that only 35% of the region’s total losses 

have taken place within 30 km of the four largest cities, or 15% of the total land surface. The 

remaining portion, or 65% of the region’s resource losses, was associated with the urban 

spread located away from the immediate fringes of very large cities. The same proportion of 

land near much smaller towns (N=230) accounted for some 30% of the total resource loss, 

demonstrating very similar degradation effects between large cities and small towns. [Table 1 

near here] Sensitivity analysis was conducted to test whether the dispersion of resource loss 



 

 

was a result of the definition of the buffer area around cities and towns. However, even when 

the area definition of the buffer rings changed, the extent of the percentage of resource areas 

lost to urban spread between very large cities and small towns remained similar (Figure 2). 

For example, redefining 30% of the total land surface as buffer areas made only a small 

percentage of difference between the four largest cities (51%) and small towns (45%). Thus, it 

can be safely inferred that a few large cities did not consume a disproportionately large 

amount of resource sites in the region. By contrast, effects of mid-sized cities’ urban spread 

were smaller than the other groups: 15% of the total land near mid-sized cities (N=12) 

explained only 21% of the total resource losses. [Figure 2 near here] 

There was a low spatial association among the losses of different resources insofar as 

a high ratio of one type of loss was not always matched by the high ratio of other types of 

resources. Pearson’s correlation analyses revealed that the pairwise correlation coefficients of 

four resources were fairly small (< 0.3), with the exception of the relationship between cash 

crops and freshwater sites. The cities of Shanghai, Nanjing, Suzhou, and Xuancheng 

presented considerably uneven proportions of losses. For example, urban spread in Shanghai 

comprised 27.1% of the region’s total of lost cash crop fields, whereas its forest loss 

comprised only 0.4%; Nanjing’s forest loss comprised 30.6%, while wetland loss comprised 

5.5%; Xuancheng’s forest loss comprised 9.2%, while freshwater sites loss comprised only 

0.1%. By contrast, the Changzhou-Wuxi-Zhenjiang region showed a relatively even 

proportion of loss, including 21% of total lost forests, 24.5% of wetlands, 21.2% of 

freshwater sites, and 13.9% of cash crop fields. The Huzhou and Jiaxing regions also showed 

a similar congruence ratio of 15.1%, 12.8%, 10.2%, and 9.3%, respectively, across the same 

resources.  

 



 

 

A non-linear relationship between city size and resource degradation 

City size showed a weak, statistically insignificant correlation with resource loss. The scaling-

function test of city size showed that the log of resource loss (Y) was positively associated 

with the log of city size (N), but the predictive capability of city size was fairly small 

(adjusted R2 = 0.30, β = 0.535 ± 0.201, N=94). A scaling exponent value of this formula, or β, 

was far smaller than 1, indicating that certain mechanism of economies of scale shows up 

relative to the loss of environmental resources as the size of a city increases. When multiple 

variables were controlled for in the stepwise regression, city size was eliminated as non-

significant. On the other hand, increases in urban spread and its degrees of spatial clustering, 

measured by Moran’s I, were retained as significant when soil types and the rate of total 

population growth were held constant (Table 2). These results showed that city size may be an 

underlying but not singularly significant cause of land-cover change associated with resource 

loss in the region. A probable interpretation of this result is that the multiplication of a ‘size 

factor’ and an ‘efficiency factor’ explains some unanticipated outcome of city size effects on 

resource loss. [Table 2 near here]  

The log of increases in the urban spread, or a size factor, was significantly associated 

with resource loss. The best-fit equation was:  

Y = -1.9 + 4.8 log X (adjusted R2 = 0.34) 

where Y is the average percentage of loss of resource sites and X is the number of increased 

urban spread cells between 1950 and 2010, when one cell unit is equivalent to a 1 km2 

resolution. The level-log relationship has an intuitively clear meaning, i.e., larger urban spread 

consumes increased resources, but the effects of additional per-unit area urban lands decrease 

as city size increases. In other words, resource loss is a saturating function of urban spread 

because, in largely developed areas, an additional expansion of urban lands is more likely to 



 

 

be similar to existing urban forms. In the same vein, in small urban places, the progressive 

increases in urban lands should have far greater negative impacts on resources than in larger 

cities.  

The Moran’s I value of urban spread patterns, or an efficiency factor, ranged from -0.4 

(highly dispersed) to +0.6 (highly clustered). Its regression coefficient was positive, meaning 

that in general, more clustered urban patterns were associated with increased resource loss (P 

< 0.001). This outcome is counter-intuitive, since sprawl-like urban forms are frequently 

associated with increased land consumption (Johnson 2001). One likely explanation for the 

result here is that Moran’s I strongly interacts with urban spread, thus its effects vary widely 

depending on the magnitude of the spread. Pearson’s correlation test supported this idea, 

showing a correlation coefficient that was fairly high at 0.47, while multicollinearity in other 

variables was not significant (all other correlation coefficients were < 0.2). Why then do 

urban patterns depend on the size of urban spread? In extensively built-up cities, developing 

new land far away from previously developed areas is often avoided, thus Moran’s I is 

expected to increase, due to the benefits of sharing existing infrastructure, social service 

facilities, and the proximity between housing and places of employment. Thus, in general, 

increases in urban size result in more clustered urban patterns. However, this trend may be 

reversed, or Moran’s I can be lowered in the process of urbanization, if continuous urban 

development is discouraged. For example, the presence of dense villages on the urban fringes 

or socially-valued resource lands can be resistant to urban development, since the estimated 

return of urban lands may not be obviously higher than the sum of current land productivity 

and total costs for development in the long run. This interactive relationship between size and 

pattern of urban spread leads to a skewed U-shape graph between Moran’s I and resource loss 

per-unit area urban spread (Figure 3). The graph indicated that a highly dispersed urban 

pattern, as well as a highly-clustered pattern to some extent, is more associated with increased 



 

 

resource loss per-unit area of urban spread than moderately compact patterns. [Figure 3 near 

here] Therefore, despite a relatively small-sized urban spread, a city may have amplified 

negative effects on resources if its spatial pattern is associated with both ends of the graph. 

Shizhuangzhen in Rugao, for example, shows a highly dispersed spread pattern (Moran’s I = -

0.19), which is associated with its fairly high resource loss of 30.9%. Similarly, the clustered 

urban spread of Haining (Moran’s I = 0.41), a small-sized city with population 64,000 in 2000, 

has affected the inner-city resource sites (total resource loss = 27.7%) such as the severe 

pollution of Xiashizhen groundwater sources (Class V in 2005) and the Dongshan forest 

largely decreased in size by newly developed industrial buildings (HSDF 2006).  

 

Complicated forces behind land-cover change 

Urban spread, despite its statistical significance, has led to varying degrees of resource 

degradation when individual resource was examined separately. For example, the loss of 

forests and wetlands had no significant relationship with the relative increases in urban lands, 

as measured by the ratio of urban lands in 2010 to the year of 1950. On the other hand, the 

loss of cash crop and freshwater sites was a strongly positive function of urban spread. This 

inconsistency among resources is due partly to the uneven distribution of resources and 

human intervention in community-specific land cover. For example, cash crop fields were 

located adjacent to mid- to large-sized cities in the eastern part of the region, as well as in 

rural areas away from cities to the west of Taihu Lake. This bifurcated distribution led to a 

relatively high clustering of cash crop losses near Shanghai and Suzhou. For example, some 

38.5% of Shanghai’s total sown areas, including grain and cash crop fields, were eliminated 

between 1990 and 2008 (Editorial Committee of Expo Shanghai Atlas 2010). Yet, the amount 

of net loss in the region was not surprisingly high (9.8%), since it was offset by newly 

cultivated cash crop fields in the Jiangsu and Zhejiang Provinces. The ratio of cash crop to 



 

 

other types of sown areas, for example, increased from 13% to 16% in Jiangsu and from 9.5% 

to 11.5% in Zhejiang Province between 1998 and 2002 (Yuan et al. 2005). Lost wetlands and 

freshwater sites were scattered to the east, north, and south of Taihu Lake, and along the 

coasts of the Changjiang and the East China Sea. The annual rate of wetland loss was 

estimated at only 0.14% over the last sixty years. Between 1990 and 2000, the rate was the 

highest at 0.6%. Interestingly, the region’s net wetland loss was far slower than the national 

average of 1.5% (Gong et al. 2010), owing to the natural growth of marshlands, estuaries, and 

constructed wetlands in the study area. Also, the region was not as strongly affected by 

macro-climatic fluctuation like temperature change and drought as other areas like China’s 

Northern plain (Qian and Zhu 2001). 

Environmental policies designed to protect natural lands may also have affected the 

non-linear relationship between urban spread and resource loss. An aggregate area of 13,525 

km2, or 3.8% of the total surface of the region’s four provinces, was protected as nature 

reserves as of 2009 (MEP 2010). Shanghai has the highest proportion of these, with 14.3% of 

the total land surface protected. Forests and wetlands are the major land types within these 

reserves; for example, 84% of Jiangsu’s nature reserves are comprised of either wetlands or 

forests (26 out of 31 sites; Jiangsu Province 2009). In effect, the urbanization process may 

have a reduced or indirect impact on the protected lands of some forests or wetlands.  

 

Discussion 

In this analysis, resource degradation in the Changjiang Delta Region does not appear to be 

confined to the urban fringes of large-sized cities. Further, city size alone does not explain the 

distribution of resource loss. The extensive urban spread of large cities may truly lead to a 

substantial loss of resources. But a set of non-linearly performing factors, such as the 



 

 

diminishing effects of per-unit area urban spread on resources, interactions with its spatial 

patterns, and high variations amongst different resource types linked to the interventionist 

regime, play a significant role in downsizing the effects of large-sized cities on resource 

degradation. More conceptually, the effects of population growth on resources, and the 

associated spread of urban lands, are offset by the increased efficiency factor during the 

urbanization process. This non-linear mechanism of urban growth may explain why city size 

is not proportionally associated with increased resource degradation, despite the sustained 

regularity of city size on a broad set of urban indicators like wealth creation, employment, 

housing provision, and energy uses (Bettencourt et al. 2007). The more centralized expansion 

of larger cities may incorporate both inner-city redevelopment opportunities and new 

development away from important resource sites. On the other hand, urban spread in smaller 

cities may lead to an increased susceptibility of resources to disturbances due to dispersed or 

polycentric patterns of expansion. Also, small cities may have limited institutional capacities, 

widespread poverty, and low functional specialization for maintaining the environmental 

quality, leading to immature coping when faced with the rapid degradation of common-pool 

resources.  

Following on from this analysis, it is clear that the simultaneous growth of small and 

large cities poses challenges to the conservation efforts of local governments. A singular 

approach of protecting only hotspots of environmental threats is difficult to achieve in a 

region where different-sized urban settlements are affecting the land-cover patterns. 

Additionally, policies designed to minimize the development of urban lands may have the 

unintended effect of suppressing reasonable supplies of developable lands in well-managed 

cities, despite a policy’s practical role in saving resource lands. This may in turn lead to the 

depletion of productive lands by motivating the rapid spread of much smaller cities and 

villages with highly duplicative and land-consumptive urban patterns. No causal relationship 



 

 

should be inferred, but the region’s resource loss and its spatial dispersion seems to be highly 

attributed to the diminished efficiency factor of urban land use in small cities and towns. In 

short, land-use control in an urbanizing region is necessary but not sufficient to ensure the 

conservation of the most valuable resource lands located between interconnected cities.  

More from a historical perspective, during the booming period of urbanization in 

China since 1978, on-ground environmental management efforts hardly achieved their 

intended goals and were overshadowed by other urgent goals of economic development and 

poverty reduction. The growth of small-sized cities and towns was promoted as a national 

policy at China’s 1980 National Conference on Urban Planning. Small cities and towns came 

to be vigorously linked with larger cities to export industrial productions to larger markets, to 

channel surplus population into rural industries, and to transfer basic social services to under-

developed villages (Kwok 1982). Simultaneously, larger cities were designated as growth 

centres under urban reform, although overly concentrated urban growth was curtailed up to a 

point (Rowe 2005). A series of governmental policy interventions, including the first National 

Land Survey (1984-1996), the Land Administrative Law with several amendments (1986), and 

the designation of nature reserves, were met with scepticism because of their lack of capital 

investment, the conflicts with localized economic gains, and the vague definition of 

preservation goals. (Lin and Ho 2003; Liu et al. 2003). More recently, at least six key forestry 

programs were initiated beginning in the late 1990s. However, the central government’s total 

investment in the programs was less than 0.2% of the national GDP in 2005, which was very 

minor compared to the nation’s enormous environmental damage (Wang et al. 2008; NBS 

2009).  

Yet, the region’s priority on urbanization and economic growth scarcely resulted in an 

unmitigated destruction of productive resource lands, despite some cases of large-scale arable 

land loss. China’s institutional players—from rural collectives to municipal governments—



 

 

appear to have valued productive land resources for very practical reasons. In Dongshanzhen 

of Suzhou, for example, cultivating aquaculture products (e.g. crabs) and cash crops (e.g. 

waxberry and pipa) generated the dominant sources of rural income, which in turn stabilized 

the livelihood of rural villages and generated high tax revenues from increased agricultural 

outputs. Thus these lands were expanded up to 36.6% of the town’s total land, whereas the 

lowland of forests was selectively converted into urban settlements for the booming tourism 

industry (Dongshanzhen Government 2007; author’s interview with Professor Rongsan 

Ruan). Additionally, land-cover conversions from resource sites to urban lands occurred in a 

very selective process and were generally under the control of local governments and 

collectives. During the mid 1980s, local governments were empowered with fairly strong 

control over land development, such as preparing annual land-use plans and issuing licenses 

for land conversions under the central quota-allocation system. At a metropolitan scale, 

Shanghai was the first Chinese city that protected its drinking water sources under the 

Regulations on the Water Source Protection of the Upper Reach of Huangpu River of 1985. 

Shanghai’s government constructed sewage pipes, relocated enterprises that did not meet 

pollution standards, closed 173 livestock farms, and reforested some 44 km2 of land along the 

river (IOSG 2010; Krantzberg et al. 2010). Due to these efforts, there were minimal land 

developments along the 5 km buffer of the river’s upper reach, with an annual rate of urban 

spread < 2%, which was far slower than the city’s overall rate of 3.1% between 1979 and 

2010.  

This trend of rising administrative power of cities, collective demands for well-

maintained environmental resources, and continued land consumption by urban households 

will pose both challenges and opportunities in the Changjiang Delta Region. Rigid regulatory 

controls on urban development or a complete freeze on the transfer of land-use rights may not 

be realistic, due to the region’s economic contribution to the production of 19% of the 



 

 

national GDP and 29% of the nation’s export commodity value (Rowe 2011). A large portion 

of resource lands will be outbid by land developers, since the economic value per area of 

urban land far exceeds the value of natural resource lands. Also, the region is already one of 

the areas with the highest conservation costs in light of rehabilitating its cumulative damage 

and relocating existing villagers living in dense rural settlements, along with the Northeast 

Plain, the Pearl River Delta, and the Sichuan Province (Xie 2009). It is true that the rate of 

China’s urbanization will probably stabilize in the next few decades, bottom-up demands for 

environmental remediation will come into play, and the decommissioning of aging 

infrastructure will be carried out for both economic gain and ecological restoration. However, 

the region’s environmental threats and instances of scarcity are in an expanding rather than 

contracting phase. Per-capita arable land was no more than 0.04 ha/person in 2005, and 

rapidly shrinking. Indeed it was less than half of the national average of 0.11 ha/person, and 

less than one fourth of the world average of 0.23 ha/person, or of the United States’ average 

of 0.62 ha/person (World Bank 2004). More broadly, Asia’s consumption of resources has 

been soaring over the last five decades. In 1961, 55% of the world’s population lived in Asia, 

consuming 22% of world’s fertilizer, 13% of world’s meat, and 27% of world’s domestic 

materials, including construction materials. In 2007, Asia’s population percentage increased 

only slightly to 60%, while resource use increased sharply to 55% (fertilizer), 43% (meat), 

and 54% (domestic materials), respectively (Galloway et al. 2008; FAO 2009; Schandl and 

West 2010). Thus, the multiplier effects of increased resource consumption, including per-

capita land and water, are likely to reshape both the regional and global environment.  
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Tables with captions 

Table 1. Changes in the area of resource sites by regions in 1950, 1979, and 2010 (unit = 1 
km2). 
 

Urban regions Forests Wetlands Freshwater sites Cash crop fields Totals 
1950 1979 2010 †1950 1979 2010 1950 1979 2010 1950 1979 2010 1950 1979 2010 

Shanghai 18 17 11 201 320 510 1,475 1,330 1,130 1,086 1,014 865 2,780 2,681 2,516 
Suzhou 227 218 146 935 850 773 2,724 2,636 2,199 1,052 1,016 872 4,938 4,720 3,990 
Wuxi-Changzhou 1,084 1,074 814 1,031 888 764 2,627 2,549 2,192 599 582 519 5,341 5,093 4,289 
Zhenjiang-Yangzhou* 751 758 407 220 185 155 1,754 1,706 1,547 481 468 441 3,206 3,117 2,550 
Nanjing* 954 952 554   336 288 247 2,204 2,112 1,899 787 766 727 4,281 4,118 3,427 
Taizhou-Nantong* 17 22 1 131 158 191 1,000 972 869 1,637 1,631 1,576 2,785 2,783 2,637 
Huzhou 2,768 2,760 2,565   639  513 411 1,981 1,941 1,847 251 234 214 5,639 5,448 5,037 
Jiaxing 94 86 40   229  173 130 909 884 800 923 914 886 2,155 2,057 1,856 
Hangzhou-Ningbo* 3,142 3,153 2,940 272 399 586 1,491 1,442 1,289 693 681 627 5,598 5,675 5,442 
Xuancheng* 5,955 5,957 5,493 373 309 256 2,024 2,032 2,006 739 731 712 9,091 9,029 8,467 
Totals 15,010  14,997  12,971  4,370 4,083 4,023 18,189 17,604 15,778 8,248 8,037 7,439 45,817 44,721 40,211 

 

Note: Each value was calculated based on the number of resource sites within the sample boundaries 

of each regional-level city (above “urban regions” column). The right-side column “Totals” are 

summation of the cells of forests, wetlands, freshwater, and cash crop sites for each year.  

* Only parts of Yangzhou, Nanjing, Taizhou, Nantong, Hangzhou, Ningbo, and Xuancheng were 

included for the calculation, since the outer boundary of the defined region does not cover all of 

these cities’ administrative areas. Thus, the size of resource sites in these cities is likely to be 

underestimated.  

† Wetland data in 1950 was not available. Thus, the trend between 1950 and 1979 was linearly 

extrapolated based on the changes between 1979 and 2010, although this assumption is likely to 

underestimate the size of wetlands in 1950.  

 

 



 

 

Table 2. Regression result: Significant factors associated with resource losses. 
 
Dependent variable:  
% resource loss 

Regression 
coefficients 

 

Standardized 
coefficients 

P > |t| 

Moran’s I 13.53 0.282 0.013 
Urban spread 0.025 0.286 0.001 
Soil texture (silt) 4.67 0.219 0.006 
Population growth -1.07 -0.150 0.043 

Note: Correlation coefficients of each listed variable were analyzed using multiple regression analysis 

with backward elimination with the percentage variance in resource losses. The four variables 

were retained at 5% significance level. Initial independent variables were per km2 lengths of 

expressways (km/km2), distances to four largest cities (km), number of towns within 50 km 

distance from the center of each sampling boundary, density of industrial enterprises, presence of 

land subsidence, presence of timber or mining sites, average land slopes (degrees), soil groups 

(clay/silt/sand; above), natural logarithm of total population (2000), row-standardized Moran’s I 

of urban spread patterns (above), relative increases in urban spread (above), and population 

growth ratio (total population in 2005 divided by total population in 1997; above). The above 

regression model is statistically significant, F = 17.5, N = 94, R2 = 0.35, P < 0.0001. 

 

 

 









 

Figure captions 

Figure 1. Regional distribution of four types of environmental resources and cumulative 
resource loss by urban spread between 1950 and 2010. 
Note: Coastal lines and water bodies were drawn based on the year of 2010.   

 

Figure 2. Percentage of resource sites lost to urban spread (1950-2010).  
Note: Relationship between buffer areas (x-axis) and the extent of resource sites lost to urban spread 

(y-axis) is compared between 4 largest cities and 230 towns. Buffer area is the percentage of 

aggregated buffer rings drawn from the centres of cities/towns to the total land surface. Extent of 

the lost resource sites is based on the percentage of the number of resource loss (red dots) to the 

total resource sites. Vertical arrows show 15% buffer area and 30% buffer area criteria, 

respectively. 

 

Figure 3. Relationship between resource loss per unit area of urban spread and Moran’s I 
coefficients.  
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