71 research outputs found

    Organizational Learning from Extreme Performance Experience: The Impact of Success and Recovery Experience

    Get PDF
    This paper argues that two different types of a firm’s own extreme performance experiences—success and recovery—and their interactions can generate survival-enhancing learning. Although these types of experience often represent valuable sources of useful learning, several important learning challenges arise when a firm has extremely limited prior experience of the same type. Thus, we theorize that a certain threshold of a given type of experience is required before each type of experience becomes valuable, with low levels of experience harming the organization. Furthermore, we propose that success and recovery experience will interact to enhance each other’s value. These conditions can help overcome learning challenges such as superstitious learning or learning from small samples. We investigate our ideas using a sample of the U.S. commercial banks founded between 1984 and 1998. Our results indicate that both success and recovery experience of a firm generate survival-enhancing learning, but only after a certain level of experience is reached. Furthermore, success and recovery experience enhance each other’s learning value, consistent with the theories that emphasize the importance of richer and contrasting experience in providing useful knowledge. Our framework advances organizational learning theory by presenting a contingent model of the impact of success and recovery experience and their interaction

    Venous malformations of the head and neck: A retrospective review of 82 cases

    Get PDF
    Background Venous malformations (VMs) are a common type of vascular malformation. However, their causes and management remain unclear, and few studies specific to VMs of the head and neck have been reported. This study describes our experiences with VMs of the head and neck. Methods This retrospective study included 82 patients who underwent treatment for head and neck VMs, among 222 who visited our vascular anomalies center. Medical records between 2003 and 2016 were reviewed to identify common features in the diagnosis and treatment. The diagnosis of suspected head and neck VMs was based on the results of imaging studies or biopsies, and the VMs were analyzed based on magnetic resonance imaging, computed tomography, and Doppler sonography findings. Results VMs were slightly more common in female patients (59.8%), and 45.1% of patients developed initial symptoms at the age of 10 or younger. Lesions were slightly more common on the right side (47.3%). The main sites involved were the cheek (27.7%) and lip area (25.5%). The muscle layer was commonly involved, in 98.7% of cases. Small lesions less than 5 cm in diameter accounted for 60.8% of cases, and well-defined types were slightly more prevalent at 55.4%. Improvement was observed in 77.1% of treated patients. Conclusions Early and accurate diagnosis and appropriate treatment according to individual symptoms are important for successful treatment of VMs. If treatment is delayed, the lesions can worsen, or recurrence becomes more likely. Therefore, VMs require a multidisciplinary approach for early and accurate diagnosis

    De Novo Design and Synthesis of Ultra-Short Peptidomimetic Antibiotics Having Dual Antimicrobial and Anti-Inflammatory Activities

    Get PDF
    Ravichandran N. Murugan, Mija Ahn, Eunha Hwang, Ji-Hyung Seo, Chaejoon Cheong, Jeong Kyu Bang, Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of KoreaBinu Jacob, Song Yub Shin, Department of Bio-Materials, Graduate School and Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of KoreaHoik Sohn, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, United States of AmericaHyo-Nam Park, Jae-Kyung Hyun, Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon, Republic of KoreaEunjung Lee, Ki-Woong Jeong, Yangmee Kim, Department of Bioscience and Biotechnology, Institute of SMART Biotechnology, Konkuk University, Seoul, Republic of KoreaKy-Youb Nam, Bioinformatics and Molecular Design Research Center, Yonsei University Research Complex, Seoul, Republic of KoreaBackground: Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability.-- Methodology/Principal Findings: In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti–methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. -- Conclusion/Significance: The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics.This work was supported in part by the Korea Basic Science Institute's research program grants T33418 (J.K.B) and T33518 (J-k.H.), and the Korea Research Foundation, funded by the Korean Government (KRF-2011-0009039 to S.Y.S.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.ChemistryBiochemistryEmail: [email protected] (JKB)Email: [email protected] (SYS

    Ripples of fear: the diffusion of a bank panic

    No full text
    Community reactions against organizations can be driven by negative information spread through a diffusion process that is distinct from the diffusion of organizational practices. Bank panics offer a classic example of selective diffusion of negative information. Bank panics involve widespread bank runs, although a low proportion of banks experience a run. We develop theory on how organizational similarity, community similarity, and network proximity create selective diffusion paths for resistance against organizations. Using data from the largest customer-driven bank panic in the United States, we find significant effects of organizational and community similarity on the diffusion of bank runs. Runs on banks are more likely to diffuse across communities with similar ethnicities, national origins, religion, and wealth, and across banks that are structurally equivalent or have the same organizational form. We also find stronger influence from runs that are spatially proximate and in the same state

    Coupling photocatalytic CO2 reduction and CH3OH oxidation for selective dimethoxymethane production

    No full text
    Abstract Currently, conventional dimethoxymethane synthesis methods are environmentally unfriendly. Here, we report a photo-redox catalysis system to generate dimethoxymethane using a silver and tungsten co-modified blue titanium dioxide catalyst (Ag.W-BTO) by coupling CO2 reduction and CH3OH oxidation under mild conditions. The Ag.W-BTO structure and its electron and hole transfer are comprehensively investigated by combining advanced characterizations and theoretical studies. Strikingly, Ag.W-BTO achieve a record photocatalytic activity of 5702.49 µmol g−1 with 92.08% dimethoxymethane selectivity in 9 h of ultraviolet-visible irradiation without sacrificial agents. Systematic isotope labeling experiments, in-situ diffuse reflectance infrared Fourier-transform analysis, and theoretical calculations reveal that the Ag and W species respectively catalyze CO2 conversion to *CH2O and CH3OH oxidation to *CH3O. Subsequently, an asymmetric carbon-oxygen coupling process between these two crucial intermediates produces dimethoxymethane. This work presents a CO2 photocatalytic reduction system for multi-carbon production to meet the objectives of sustainable economic development and carbon neutrality

    Hypoxia Promotes Angiogenic Effect in Extracranial Arteriovenous Malformation Endothelial Cells

    No full text
    Arteriovenous malformation (AVM) is characterized by high-flow blood vessels connecting arteries and veins without capillaries. This disease shows increased angiogenesis and a pathophysiological hypoxic environment in proximal tissues. Here, we analyzed the effects of hypoxia on angiogenesis in the endothelial cells (ECs) of AVM and normal tissues. ECs from human normal and AVM tissues were evaluated using immunocytochemistry with CD31. In vitro tube formation under hypoxia was tested in both ECs using Matrigel. The relative expression of angiogenesis-related genes was measured using real-time PCR. Under normoxia, CD31 was significantly higher in AVM ECs (79.23 ± 0.65%) than in normal ECs (74.15 ± 0.70%). Similar results were observed under hypoxia in AVM ECs (63.85 ± 1.84%) and normal ECs (60.52 ± 0.51%). In the tube formation test under normoxic and hypoxic conditions, the junction count and total vessel length were significantly greater in AVM ECs than normal ECs. Under both normoxia and hypoxia, the angiogenesis-related gene FSTL1 showed a significantly higher expression in AVM ECs than in normal ECs. Under hypoxia, CSPG4 expression was significantly lower in AVM ECs than in normal ECs. Accordingly, the angiogenic effect was increased in AVM ECs compared with that in normal ECs. These results provide a basic knowledge for an AVM treatment strategy

    Optimization of self-microemulsifying drug delivery system for phospholipid complex of telmisartan using D-optimal mixture design.

    No full text
    To improve the dissolution behavior of telmisartan (TMS), a poorly water-soluble angiotensin II receptor blocker, TMS-phospholipid complex (TPC) was prepared by solvent evaporation method and characterized by differential scanning calorimetry and powder X-ray diffractometry. The crystalline structure of TMS was transited into an amorphous state by TPC formation. The equilibrium solubility of TPC (1.3-6.1 mg/mL) in various vehicles was about 100 times higher than that of TMS (0.009-0.058 mg/mL). TPC-loaded self-microemulsifying drug delivery system (SMEDDS) formulation was optimized using the D-optimal mixture design with the composition of 14% Capryol 90 (oil; X1), 59.9% tween 80 (surfactant; X2), and 26.1% tetraglycol (cosurfactant; X3) as independent variables, which resulted in a droplet size of 22.17 nm (Y1), TMS solubilization of 4.06 mg/mL (Y2), and 99.4% drug release in 15 min (Y3) as response factors. The desirability function value was 0.854, indicating the reliability and accuracy of optimization; in addition, good agreement was found between the model prediction and experimental values of Y1, Y2, and Y3. Dissolution of raw TMS was poor and pH-dependent, where it had extremely low dissolution ( 90% in 5 min) in pH 1.2 medium. In contrast, the dissolution of the optimized TPC-loaded SMEDDS was pH-independent and reached over 90% within 5 min in all the media tested. Thus, we suggested that phospholipid complex formation and SMEDDS formulation using the experimental design method might be a promising approach to enhance the dissolution of poorly soluble drugs
    corecore