78 research outputs found

    Oligodendrocyte Death in Pelizaeus-Merzbacher Disease Is Rescued by Iron Chelation.

    Get PDF
    Pelizaeus-Merzbacher disease (PMD) is an X-linked leukodystrophy caused by mutations in Proteolipid Protein 1 (PLP1), encoding a major myelin protein, resulting in profound developmental delay and early lethality. Previous work showed involvement of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress pathways, but poor PLP1 genotype-phenotype associations suggest additional pathogenetic mechanisms. Using induced pluripotent stem cell (iPSC) and gene-correction, we show that patient-derived oligodendrocytes can develop to the pre-myelinating stage, but subsequently undergo cell death. Mutant oligodendrocytes demonstrated key hallmarks of ferroptosis including lipid peroxidation, abnormal iron metabolism, and hypersensitivity to free iron. Iron chelation rescued mutant oligodendrocyte apoptosis, survival, and differentiationin vitro, and post-transplantation in vivo. Finally, systemic treatment of Plp1 mutant Jimpy mice with deferiprone, a small molecule iron chelator, reduced oligodendrocyte apoptosis and enabled myelin formation. Thus, oligodendrocyte iron-induced cell death and myelination is rescued by iron chelation in PMD pre-clinical models.H.N. acknowledges postdoctoral fellowship support from the European Leukodystrophy Association, and career transition fellowship support from National Multiple Sclerosis Society. M.C. acknowledges funding support from Career Development Grant awarded by Cerebral Palsy Alliance Research Foundation Inc. This work was supported by funding from the National Multiple Sclerosis Foundation (to M.W., D.H. R.), the European Leukodystrophy Association and the New York Stem Cell Foundation (to M.W.), and Action Medical Research, the Adelson Medical Research Foundation, the National Institute for Health Research Cambridge Biomedical Research Centre and the European Research Council (to D.H. R)

    Accumulation of metals in GOLD4 COPD lungs is associated with decreased CFTR levels

    Get PDF
    Abstract Background The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that primarily resides in airway epithelial cells. Decreased CFTR expression and/or function lead to impaired airway surface liquid (ASL) volume homeostasis, resulting in accumulation of mucus, reduced clearance of bacteria, and chronic infection and inflammation. Methods Expression of CFTR and the cigarette smoke metal content were assessed in lung samples of controls and COPD patients with established GOLD stage 4. CFTR protein and mRNA were quantified by immunohistochemistry and quantitative RT-PCR, respectively. Metals present in lung samples were quantified by ICP-AES. The effect of cigarette smoke on down-regulation of CFTR expression and function was assessed using primary human airway epithelial cells. The role of leading metal(s) found in lung samples of GOLD 4 COPD patients involved in the alteration of CFTR was confirmed by exposing human bronchial epithelial cells 16HBE14o- to metal-depleted cigarette smoke extracts. Results We found that CFTR expression is reduced in the lungs of GOLD 4 COPD patients, especially in bronchial epithelial cells. Assessment of metals present in lung samples revealed that cadmium and manganese were significantly higher in GOLD 4 COPD patients when compared to control smokers (GOLD 0). Primary human airway epithelial cells exposed to cigarette smoke resulted in decreased expression of CFTR protein and reduced airway surface liquid height. 16HBE14o-cells exposed to cigarette smoke also exhibited reduced levels of CFTR protein and mRNA. Removal and/or addition of metals to cigarette smoke extracts before exposure established their role in decrease of CFTR in airway epithelial cells. Conclusions CFTR expression is reduced in the lungs of patients with severe COPD. This effect is associated with the accumulation of cadmium and manganese suggesting a role for these metals in the pathogenesis of COPD

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Pre-analytical variables influence zinc measurement in blood samples.

    No full text
    Zinc deficiency continues to be a major concern for global public health. The zinc status of a target population is typically estimated by measuring circulating zinc levels, but the sampling procedures are not standardized and thus may result in analytical discrepancies. To examine this, we designed a study that controlled most of the technical parameters in order to focus on five pre-analytical variables reported to influence the measurement of zinc in blood samples, including (1) blood draw site (capillary or venous), (2) blood sample matrix (plasma or serum), (3) blood collection tube manufacturer (Becton, Dickinson and Company or Sarstedt AG & Co), (4) blood processing time (0, 4, or 24 hours), and (5) blood holding temperatures (4°C, 20°C, or 37°C). A diverse cohort of 60 healthy adults were recruited to provide sequential capillary and venous blood samples, which were carefully processed under a single chain of custody and measured for zinc content using inductively coupled plasma optical emission spectrometry. When comparing blood draw sites, the mean zinc content of capillary samples was 0.054 mg/L (8%; p<0.0001) higher than venous blood from the same donors. When comparing blood sample matrices, the mean zinc content of serum samples was 0.029 mg/L (5%; p<0.0001) higher than plasma samples from the same donors. When comparing blood collection tube manufacturer, the mean zinc content from venous blood samples did not differ between venders, but the mean zinc content from BD capillary plasma was 0.036 mg/L (6%; p<0.0001) higher than Sarstedt capillary plasma from the same donors. When comparing processing times, the mean zinc content of plasma and serum samples was 5-12% higher (p<0.0001) in samples processed 4-24 hour after collection. When comparing holding temperatures, the mean zinc content of plasma and serum samples was 0.5-7% higher (p = 0.0007 or p = 0.0061, respectively) in samples temporarily held at 20°C or 37°C after collection. Thus even with the same donors and blood draws, significant differences in zinc content were observed with different draw sites, tube types, and processing procedures, demonstrating that key pre-analytic variables can have an impact on zinc measurement, and subsequent classification of zinc status. Minimizing these pre-analytical variables is important for generating best practice guidelines for assessment of zinc status

    Editorial: Metal Biology Takes Flight: The Study of Metal Homeostasis and Detoxification in Insects

    No full text
    Metals such as copper, iron, manganese, and zinc are clearly required for proper metabolism and development, while imbalances can lead to systemic dysfunction and disease. As a result, organisms have evolved complex genetic systems for the regulation of metal levels, including import, export, and sequestration of metals within cells and sub-cellular compartments. The study of metal biology in insects has the potential to greatly expand our understanding of metal biology. The results of such studies might point to new possible therapeutic interventions for neurological and other human diseases, as well as new strategies for insect disease vector control. The articles collected in this Research Topic comprise review and original research on metal biology in insects
    corecore