1,398 research outputs found
Photovoltaic power systems workshop
Discussions are presented on apparent deficiencies in NASA planning and technology development relating to a standard power module (25-35 kW) and to future photovoltaic power systems in general. Topics of discussion consider the following: (1) adequate studies on power systems; (2) whether a standard power system module should be developed from a standard spacecraft; (3) identification of proper approaches to cost reduction; (4) energy storage avoidance; (5) attitude control; (6) thermal effects of heat rejection on solar array configuration stability; (7) assembly of large power systems in space; and (8) factoring terrestrial photovoltaic work into space power systems for possible payoff
Controlling Condensate Collapse and Expansion with an Optical Feshbach Resonance
We demonstrate control of the collapse and expansion of an 88Sr Bose-Einstein
condensate using an optical Feshbach resonance (OFR) near the 1S0-3P1
intercombination transition at 689 nm. Significant changes in dynamics are
caused by modifications of scattering length by up to +- ?10a_bg, where the
background scattering length of 88Sr is a_bg = -2a0 (1a0 = 0.053 nm). Changes
in scattering length are monitored through changes in the size of the
condensate after a time-of-flight measurement. Because the background
scattering length is close to zero, blue detuning of the OFR laser with respect
to a photoassociative resonance leads to increased interaction energy and a
faster condensate expansion, whereas red detuning triggers a collapse of the
condensate. The results are modeled with the time-dependent nonlinear
Gross-Pitaevskii equation.Comment: 5 pages, 3 figure
Ultralong-Range Rydberg Molecules in a Divalent-Atomic System
We report the creation of ultralong-range Sr molecules comprising one
ground-state atom and one atom in a Rydberg state
for ranging from 29 to 36. Molecules are created in a trapped ultracold
atomic gas using two-photon excitation near resonant with the
intermediate state, and their formation is detected through ground-state atom
loss from the trap. The observed molecular binding energies are fit with the
aid of first-order perturbation theory that utilizes a Fermi pseudopotential
with effective -wave and -wave scattering lengths to describe the
interaction between an excited Rydberg electron and a ground-state Sr atom.Comment: 5 pages, 2 figure
High Resolution Ionization of Ultracold Neutral Plasmas
Collective effects, such as waves and instabilities, are integral to our
understanding of most plasma phenomena. We have been able to study these in
ultracold neutral plasmas by shaping the initial density distribution through
spatial modulation of the ionizing laser intensity. We describe a relay imaging
system for the photoionization beam that allows us to create higher resolution
features and its application to extend the observation of ion acoustic waves to
shorter wavelengths. We also describe the formation of sculpted density
profiles to create fast expansion of plasma into vacuum and streaming plasmas
Electron Temperature Evolution in Expanding Ultracold Neutral Plasmas
We have used the free expansion of ultracold neutral plasmas as a
time-resolved probe of electron temperature. A combination of experimental
measurements of the ion expansion velocity and numerical simulations
characterize the crossover from an elastic-collision regime at low initial
Gamma_e, which is dominated by adiabatic cooling of the electrons, to the
regime of high Gamma_e in which inelastic processes drastically heat the
electrons. We identify the time scales and relative contributions of various
processes, and experimentally show the importance of radiative decay and
disorder-induced electron heating for the first time in ultracold neutral
plasmas
Ultracold Neutral Plasmas
Ultracold neutral plasmas are formed by photoionizing laser-cooled atoms near
the ionization threshold. Through the application of atomic physics techniques
and diagnostics, these experiments stretch the boundaries of traditional
neutral plasma physics. The electron temperature in these plasmas ranges from
1-1000 K and the ion temperature is around 1 K. The density can approach
cm. Fundamental interest stems from the possibility of
creating strongly-coupled plasmas, but recombination, collective modes, and
thermalization in these systems have also been studied. Optical absorption
images of a strontium plasma, using the Sr
transition at 422 nm, depict the density profile of the plasma, and probe
kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum
measures the ion velocity distribution, which gives an accurate measure of the
ion dynamics in the first microsecond after photoionization.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
Experimental Realization of an Exact Solution to the Vlasov Equations for an Expanding Plasma
We study the expansion of ultracold neutral plasmas in the regime in which
inelastic collisions are negligible. The plasma expands due to the thermal
pressure of the electrons, and for an initial spherically symmetric Gaussian
density profle, the expansion is self-similar. Measurements of the plasma size
and ion kinetic energy using fluorescence imaging and spectroscopy show that
the expansion follows an analytic solution of the Vlasov equations for an
adiabatically expanding plasma.Comment: 4 pages, 4 figure
- …