117 research outputs found

    PhOTO Zebrafish: A Transgenic Resource for In Vivo Lineage Tracing during Development and Regeneration

    Get PDF
    Background: Elucidating the complex cell dynamics (divisions, movement, morphological changes, etc.) underlying embryonic development and adult tissue regeneration requires an efficient means to track cells with high fidelity in space and time. To satisfy this criterion, we developed a transgenic zebrafish line, called PhOTO, that allows photoconvertible optical tracking of nuclear and membrane dynamics in vivo. Methodology: PhOTO zebrafish ubiquitously express targeted blue fluorescent protein (FP) Cerulean and photoconvertible FP Dendra2 fusions, allowing for instantaneous, precise targeting and tracking of any number of cells using Dendra2 photoconversion while simultaneously monitoring global cell behavior and morphology. Expression persists through adulthood, making the PhOTO zebrafish an excellent tool for studying tissue regeneration: after tail fin amputation and photoconversion of a ~100µm stripe along the cut area, marked differences seen in how cells contribute to the new tissue give detailed insight into the dynamic process of regeneration. Photoconverted cells that contributed to the regenerate were separated into three distinct populations corresponding to the extent of cell division 7 days after amputation, and a subset of cells that divided the least were organized into an evenly spaced, linear orientation along the length of the newly regenerating fin. Conclusions/Significance: PhOTO zebrafish have wide applicability for lineage tracing at the systems-level in the early embryo as well as in the adult, making them ideal candidate tools for future research in development, traumatic injury and regeneration, cancer progression, and stem cell behavior

    Niclosamide Suppresses Cancer Cell Growth By Inducing Wnt Co-Receptor LRP6 Degradation and Inhibiting the Wnt/β-Catenin Pathway

    Get PDF
    The Wnt/β-catenin signaling pathway is important for tumor initiation and progression. The low density lipoprotein receptor-related protein-6 (LRP6) is an essential Wnt co-receptor for Wnt/β-catenin signaling and represents a promising anticancer target. Recently, the antihelminthic drug, niclosamide was found to inhibit Wnt/β-catenin signaling, although the mechanism was not well defined. We found that niclosamide was able to suppress LRP6 expression and phosphorylation, block Wnt3A-induced β-catenin accumulation, and inhibit Wnt/β-catenin signaling in HEK293 cells. Furthermore, the inhibitory effects of niclosamide on LRP6 expression/phosphorylation and Wnt/β-catenin signaling were conformed in human prostate PC-3 and DU145 and breast MDA-MB-231 and T-47D cancer cells. Moreover, we showed that the mechanism by which niclosamide suppressed LRP6 resulted from increased degradation as evident by a shorter half-life. Finally, we demonstrated that niclosamide was able to induce cancer cell apoptosis, and displayed excellent anticancer activity with IC50 values less than 1 µM for prostate PC-3 and DU145 and breast MDA-MB-231 and T-47D cancer cells. The IC50 values are comparable to those shown to suppress the activities of Wnt/β-catenin signaling in prostate and breast cancer cells. Our data indicate that niclosamide is a unique small molecule Wnt/β-catenin signaling inhibitor targeting the Wnt co-receptor LRP6 on the cell surface, and that niclosamide has a potential to be developed a novel chemopreventive or therapeutic agent for human prostate and breast cancer

    Direct Inhibition of GSK3β by the Phosphorylated Cytoplasmic Domain of LRP6 in Wnt/β-Catenin Signaling

    Get PDF
    Wnt/β-catenin signaling plays a central role in development and is also involved in a diverse array of diseases. Binding of Wnts to the coreceptors Frizzled and LRP6/5 leads to phosphorylation of PPPSPxS motifs in the LRP6/5 intracellular region and the inhibition of GSK3β bound to the scaffold protein Axin. However, it remains unknown how GSK3β is specifically inhibited upon Wnt stimulation. Here, we show that overexpression of the intracellular region of LRP6 containing a Ser/Thr rich cluster and a PPPSPxS motif impairs the activity of GSK3β in cells. Synthetic peptides containing the PPPSPxS motif strongly inhibit GSK3β in vitro only when they are phosphorylated. Microinjection of these peptides into Xenopus embryos confirms that the phosphorylated PPPSPxS motif potentiates Wnt-induced second body axis formation. In addition, we show that the Ser/Thr rich cluster of LRP6 plays an important role in LRP6 binding to GSK3β. These observations demonstrate that phosphorylated LRP6/5 both recruits and directly inhibits GSK3β using two distinct portions of its cytoplasmic sequence, and suggest a novel mechanism of activation in this signaling pathway

    The role of microRNA-155/liver X receptor pathway in experimental and idiopathic pulmonary fibrosis

    Get PDF
    Background: Idiopathic Pulmonary Fibrosis (IPF) is progressive and rapidly fatal. Improved understanding of pathogenesis is required to prosper novel therapeutics. Epigenetic changes contribute to IPF therefore microRNAs may reveal novel pathogenic pathways. Objectives: To determine the regulatory role of microRNA(miR)-155 in the pro-fibrotic function of murine lung macrophages and fibroblasts, IPF lung fibroblasts and its contribution to experimental pulmonary fibrosis. Methods: Bleomycin-induced lung fibrosis in wild-type and miR-155-/- mice was analyzed by histology, collagen and pro-fibrotic gene expression. Mechanisms were identified by in silico and molecular approaches; validated in mouse lung fibroblasts and macrophages, and in IPF lung fibroblasts, using loss-and-gain of function assays, and in vivo using specific inhibitors. Results: miR-155-/- mice developed exacerbated lung fibrosis, increased collagen deposition, collagen 1 and 3 mRNA expression, TGFβ production, and activation of alternatively-activated macrophages, contributed by deregulation of the microRNA-155 target gene the liver X receptor (LXR)α in lung fibroblasts and macrophages. Inhibition of LXRα in experimental lung fibrosis and in IPF lung fibroblasts reduced the exacerbated fibrotic response. Similarly, enforced expression of miR-155 reduced the pro-fibrotic phenotype of IPF and miR-155-/- fibroblasts. Conclusion: We describe herein a molecular pathway comprising miR-155 and its epigenetic LXRα target that when deregulated enables pathogenic pulmonary fibrosis. Manipulation of the miR-155/LXR pathway may have therapeutic potential for IPF

    Improved representation of the diurnal variation of warm season precipitation by an atmospheric general circulation model at a 10 km horizontal resolution

    Get PDF
    This study investigates the diurnal variation of the warm season precipitation simulated by the Goddard Earth Observing System version 5 atmospheric general circulation model for 2??years (2005???2006) at a horizontal resolution of 10??km. The simulation was validated with the satellite-derived Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation data and the Modern-Era Retrospective analysis for Research and Applications atmospheric reanalysis for atmospheric winds and moisture. The simulation is compared with the coarse-resolution run in 50??km to examine the impacts driven by resolution change. Overall, the 10??km model tends to reproduce the important features of the observed diurnal variation, such as the amplitude and phase at which precipitation peaks in the evening on land and in the morning over the ocean, despite an excessive amplitude bias over land. The model also reproduces the realistic propagation patterns of precipitation in the vicinity of ocean coasts and major mountains. The regional characteristics of the diurnal precipitation over two regions, the Bay of Bengal and the Great Plains in North America, are examined in detail, where the observed diurnal cycle exhibits a systematic transition in the peak phase due to the development and propagation of regional-scale convective systems. The model is able to reproduce this pattern as well as the diurnal variation of low-level wind and moisture convergence; however, it is less effective at representing the nocturnal peak of precipitation over the Great Plains. The model results suggest that increasing the horizontal resolution of the model to 10??km substantially improves the representation of the diurnal precipitation cycle. However, intrinsic model deficiencies in topographical precipitation and the accurate representation of mesoscale convective systems remain a challenge

    Multivariate Analysis and Visualization of Splicing Correlations in Single-Gene Transcriptomes

    Get PDF
    BACKGROUND: RNA metabolism, through 'combinatorial splicing', can generate enormous structural diversity in the proteome. Alternative domains may interact, however, with unpredictable phenotypic consequences, necessitating integrated RNA-level regulation of molecular composition. Splicing correlations within transcripts of single genes provide valuable clues to functional relationships among molecular domains as well as genomic targets for higher-order splicing regulation. RESULTS: We present tools to visualize complex splicing patterns in full-length cDNA libraries. Developmental changes in pair-wise correlations are presented vectorially in 'clock plots' and linkage grids. Higher-order correlations are assessed statistically through Monte Carlo analysis of a log-linear model with an empirical-Bayes estimate of the true probabilities of observed and unobserved splice forms. Log-linear coefficients are visualized in a 'spliceprint,' a signature of splice correlations in the transcriptome. We present two novel metrics: the linkage change index, which measures the directional change in pair-wise correlation with tissue differentiation, and the accuracy index, a very simple goodness-of-fit metric that is more sensitive than the integrated squared error when applied to sparsely populated tables, and unlike chi-square, does not diverge at low variance. Considerable attention is given to sparse contingency tables, which are inherent to single-gene libraries. CONCLUSION: Patterns of splicing correlations are revealed, which span a broad range of interaction order and change in development. The methods have a broad scope of applicability, beyond the single gene – including, for example, multiple gene interactions in the complete transcriptome

    Indicators of "Healthy Aging" in older women (65-69 years of age). A data-mining approach based on prediction of long-term survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction of long-term survival in healthy adults requires recognition of features that serve as early indicators of successful aging. The aims of this study were to identify predictors of long-term survival in older women and to develop a multivariable model based upon longitudinal data from the Study of Osteoporotic Fractures (SOF).</p> <p>Methods</p> <p>We considered only the youngest subjects (<it>n </it>= 4,097) enrolled in the SOF cohort (65 to 69 years of age) and excluded older SOF subjects more likely to exhibit a "frail" phenotype. A total of 377 phenotypic measures were screened to determine which were of most value for prediction of long-term (19-year) survival. Prognostic capacity of individual predictors, and combinations of predictors, was evaluated using a cross-validation criterion with prediction accuracy assessed according to time-specific AUC statistics.</p> <p>Results</p> <p>Visual contrast sensitivity score was among the top 5 individual predictors relative to all 377 variables evaluated (mean AUC = 0.570). A 13-variable model with strong predictive performance was generated using a forward search strategy (mean AUC = 0.673). Variables within this model included a measure of physical function, smoking and diabetes status, self-reported health, contrast sensitivity, and functional status indices reflecting cumulative number of daily living impairments (HR ≥ 0.879 or RH ≤ 1.131; P < 0.001). We evaluated this model and show that it predicts long-term survival among subjects assigned differing causes of death (e.g., cancer, cardiovascular disease; P < 0.01). For an average follow-up time of 20 years, output from the model was associated with multiple outcomes among survivors, such as tests of cognitive function, geriatric depression, number of daily living impairments and grip strength (P < 0.03).</p> <p>Conclusions</p> <p>The multivariate model we developed characterizes a "healthy aging" phenotype based upon an integration of measures that together reflect multiple dimensions of an aging adult (65-69 years of age). Age-sensitive components of this model may be of value as biomarkers in human studies that evaluate anti-aging interventions. Our methodology could be applied to data from other longitudinal cohorts to generalize these findings, identify additional predictors of long-term survival, and to further develop the "healthy aging" concept.</p

    Mechanical Bonds and Topological Effects in Radical Dimer Stabilization

    Get PDF
    While mechanical bonding stabilizes tetrathiafulvalene (TTF) radical dimers, the question arises: what role does topology play in catenanes containing TTF units? Here, we report how topology, together with mechanical bonding, in isomeric [3]- and doubly interlocked [2]catenanes controls the formation of TTF radical dimers within their structural frameworks, including a ring-in-ring complex (formed between an organoplatinum square and a {2+2} macrocyclic polyether containing two 1,5-dioxynaphthalene (DNP) and two TTF units) that is topologically isomeric with the doubly interlocked [2]catenane. The separate TTF units in the two {1+1} macrocycles (each containing also one DNP unit) of the isomeric [3]catenane exhibit slightly different redox properties compared with those in the {2+2} macrocycle present in the [2]catenane, while comparison with its topological isomer reveals substantially different redox behavior. Although the stabilities of the mixed-valence (TTF2)^(•+) dimers are similar in the two catenanes, the radical cationic (TTF^(•+))_2 dimer in the [2]catenane occurs only fleetingly compared with its prominent existence in the [3]catenane, while both dimers are absent altogether in the ring-in-ring complex. The electrochemical behavior of these three radically configurable isomers demonstrates that a fundamental relationship exists between topology and redox properties

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore