2,746 research outputs found

    Nuclear interactions of low-energy cosmic rays with the interstellar medium

    Full text link
    Cosmic rays of kinetic energies below ~1 GeV per nucleon are thought to play a key role in the chemistry and dynamics of the interstellar medium. They are also thought to be responsible for nucleosynthesis of the light elements Li, Be, and B. However, very little is known about the flux and composition of low-energy cosmic rays since the solar modulation effect makes impossible a direct detection of these particles near Earth. We first discuss the information that the light elements have brought to cosmic-ray studies. We then discuss the prospects for detection of nuclear gamma-ray line emission produced by interaction of low-energy cosmic rays with interstellar nuclei.Comment: 6 pages, 3 figures. Invited review presented at the conference on Cosmic Rays and the Interstellar Medium (CRISM-2011), Montpellier, France, June 26-July 1. To be published in a special issue of MEMORIE della Societa Astronomica Italian

    Shape of the 4.438 MeV gamma-ray line of ^12C from proton and alpha-particle induced reactions on ^12C and ^16O

    Full text link
    We calculated in detail the angular distribution of gamma-rays and the resulting shape of the gamma-ray line produced by the nuclear deexcitation of the 4.439 MeV state of ^12C following proton and alpha-particle interactions with ^12C and ^16O in the energy range from threshold to 100 MeV per nucleon, making use of available experimental data. In the proton energy range from 8.6 to 20 MeV, the extensive data set of a recent accelerator experiment on gamma-ray line shapes and angular distributions was used to deduce parameterizations for the gamma-ray emission of the 2^+, 4.439 MeV state of ^12C following inelastic proton scattering off ^12C and proton induced spallation of ^16O. At higher proton energies and for alpha-particle induced reactions, optical model calculations were the main source to obtain the needed reaction parameters for the calculation of gamma-ray line shapes and angular distributions. Line shapes are predicted for various interaction scenarios of accelerated protons and alpha-particles in solar flares.Comment: REVTeX, 9 pages, 8 figures, 4 tables, to be published by Phys. Rev.

    In situ nanocompression testing of irradiated copper.

    Get PDF
    Increasing demand for energy and reduction of carbon dioxide emissions has revived interest in nuclear energy. Designing materials for radiation environments necessitates a fundamental understanding of how radiation-induced defects alter mechanical properties. Ion beams create radiation damage efficiently without material activation, but their limited penetration depth requires small-scale testing. However, strength measurements of nanoscale irradiated specimens have not been previously performed. Here we show that yield strengths approaching macroscopic values are measured from irradiated ~400 nm-diameter copper specimens. Quantitative in situ nanocompression testing in a transmission electron microscope reveals that the strength of larger samples is controlled by dislocation-irradiation defect interactions, yielding size-independent strengths. Below ~400 nm, size-dependent strength results from dislocation source limitation. This transition length-scale should be universal, but depends on material and irradiation conditions. We conclude that for irradiated copper, and presumably related materials, nanoscale in situ testing can determine bulk-like yield strengths and simultaneously identify deformation mechanisms

    Spherical nanoindentation – advancements and prospects towards its application as a multifunctional testing technique

    Get PDF
    With the development of modern high-performance materials and components, cases increase where conventional testing techniques used for the mechanical characterization miss their target. Material fabrication at a bench scale, miniaturization and not least cost-effectiveness yearn for a highly reliable, fast and highly automatable testing technique. Even though uniaxial micromechanical tests on micro-pillars or -tensile samples are well suitable for the extraction of flow curves, they face the problem of elaborate specimen manufacturing. Spherical nanoindentation could be a candidate technique to overcome the mentioned drawbacks, since time needed for sample preparation is tremendously reduced. The present study will outline solutions of existing problems, which may lay the foundation for spherical nanoindentation to become a widely-used testing technique. Main objections concerning tip imperfections will be resolved by modifying the calibration procedure, and validated on a broad spectrum of materials independent of the indenter tip radius. Once the actual tip shape is available, displacement-time profiles can be designed to guarantee constant strain-rates during testing and thus permit the determination of the strain-rate sensitivity for rate-dependent materials. Finally, the comparison between nanoindentation flow curves and uniaxial tests will evidence that spherical indentation is a highly reliable technique for the extensive mechanical characterization of modern high-performance materials and show its high potential as a multifunctional standard testing technique. Please click Additional Files below to see the full abstract

    The Evolution of a Scholarship of Teaching and Learning Participant

    Get PDF

    Engaging Conversationally: A Method for Engaging Students in Their Learning and Examining Instruction

    Get PDF
    Under the principles of the scholarship of teaching and learning and action research this study sought to examine how an instructor created and facilitated engagement in his students. The research was primarily undertaken to further define the middle range theory of mutual engagement. Theoretical sampling was used to analyze approximately 100 pieces of data that included instructor notes, teaching observations, feedback from conference presentations, student assessments, and end of semester student evaluations. Engaging conversationally (EC) emerged as the phenomenon that described the instructor’s engagement in the learning process. EC was an ongoing cyclical pattern of inquiry that included preparing, reflecting and modeling. Interconnected in the pattern of inquiry were personality traits, counselor education, and teaching philosophy

    Notes on distribution and bio-ecology of Characeae

    Get PDF
    The species of the family Characeae have for many years been generally neglected by botanists leaving identification a difficult matter due to the absence of usable and practical keys and descriptions

    Influence of Yttrium on the Thermal Stability of Ti-Al-N Thin Films

    Get PDF
    Ti(1-x)Al(x)N coated tools are commonly used in high-speed machining, where the cutting edge of an end-mill or insert is exposed to temperatures up to 1100 degrees C. Here, we investigate the effect of Yttrium addition on the thermal stability of Ti(1-x)Al(x)N coatings. Reactive DC magnetron sputtering of powder metallurgically prepared Ti(0.50)Al(0.50), Ti(0.49)Al(0.49)Y(0.02), and Ti(0.46)Al(0.46)Y(0.08) targets result in the formation of single-phase cubic (c) Ti(0.45)Al(0.55)N, binary cubic/wurtzite c/w-Ti(0.41)Al(0.57)Y(0.02)N and singe-phase w-Ti(0.38)Al(0.54)Y(0.08)N coatings. Using pulsed DC reactive magnetron sputtering for the Ti(0.49)Al(0.49)Y(0.02) target allows preparing single-phase c-Ti(0.46)Al(0.52)Y(0.02)N coatings. By employing thermal analyses in combination with X-ray diffraction and transmission electron microscopy investigations of as deposited and annealed (in He atmosphere) samples, we revealed that Y effectively retards the decomposition of the Ti(1-x-y)Al(x)Y(y)N solid-solution to higher temperatures and promotes the precipitation of c-TiN, c-YN, and w-AlN. Due to their different microstructure and morphology already in the as deposited state, the hardness of the coatings decreases from similar to 35 to 22 GPa with increasing Y-content and increasing wurtzite phase fraction. Highest peak hardness of similar to 38 GPa is obtained for the Y-free c-Ti(0.45)Al(0.55)N coating after annealing at T(a) = 950 degrees C, due to spinodal decomposition. After annealing above 1000 degrees C the highest hardness is obtained for the 2 mol % YN containing c-Ti(0.46)Al(0.52)Y(0.02)N coating with similar to 29 and 28 GPa for T(a) = 1150 and 1200 degrees C, respectively

    The Evolution of a Scholarship of Teaching and Learning Participant

    Get PDF
    • …
    corecore