23 research outputs found

    CE 322-102: Hydraulic Engineering

    Get PDF

    Brain Tumor Area Segmentation of MRI Images

    Get PDF
    Accurate and timely detection of the brain tumor area has a great impact on the choice of treatment, its success rate, and following the disease process during treatment. The existing algorithms for brain tumor diagnosis have problems in terms of good performance on various brain images with different qualities, low sensitivity of the results to the parameters introduced in the algorithm, and also reliable diagnosis of tumors in the early stages of formation. In this study, a two-stage segmentation method for accurate detection of the tumor area in magnetic resonance imaging of the brain is presented. In the first stage, after performing the necessary preprocessing on the image, the location of the tumor is located using a threshold-based segmentation method, and in the second stage, it is used as an indicator in a pond segmentation method based on the marker used. Placed. Given that in the first stage there is not much emphasis on accurate detection of the tumor area, the selection of threshold values over a large range of values will not affect the final results. In the second stage, the use of the marker-based pond segmentation method will lead to accurate detection of the tumor area. The results of the implementations show that the proposed method for accurate detection of the tumor area in a large range of changes in input parameters has the same and accurate results

    Evaluation antimicrobial resistance of Acinetobacter baumannii isolated from Shahrekord teaching hospitals in 2013

    Get PDF
    زمینه و هدف: اسینتوباکتر بومانی یک پاتوژن فرصت طلب مهم است که مسئول عفونت های بیمارستانی متعددی از قبیل پنومونی، باکتریمی، عفونت های زخم های جراحی، مننژیت ثانویه وعفونت های مجرای اداری می باشد. هدف از این مطالعه بررسی شیوع و مقاومت آنتی بیوتیکی ایزوله های اسینتوباکتر بومانی در بیمارستان های آموزشی بوده است. روش بررسی: در این مطالعه مقطعی توصیفی، 100 ایزوله اسینتو باکتر بومانی از بخش های جراحی، اورژانس و مراقبت های ویژه بیمارستان های آموزشی شهرکرد (هاجر، کاشانی و امام علی) جداسازی شد. پس از تأیید و تشخیص باکتری با روش های استاندارد باکتری شناسی، میزان حساسیت آن ها نسبت به 12 آنتی بیوتیک به روش آنتی بیوگرام (دیسک دیفیوژن) بررسی شد. یافته ها: بررسی مقاومت آنتی بیوتیکی ایزوله ها نشان داد که بیشترین مقاومت به ترتیب در برابر آنتی بیوتیک های سفتازیدیم (94)، سفوتاکسیم (93)، سفپیم (91)، جنتامایسین (85)، سیپروفلوکساسین (89)، نورفلوکساسین (87)، ایمی پنم (86)، مروپنم (73)، توبرامایسن (67) و آمیکاسین (66) بوده و بیشترین حساسیت به ترتیب در برابر آنتی بیوتیک های کلیستین (76) و آمپی سیلین- سولباکتام (70) می باشد. همچنین 93 درصد از ایزوله ها مقاومت آنتی بیوتیکی چندگانه داشتند. نتیجه گیری: : در این مطالعه، ایزوله های اسینتوباکتر بومانی در بیمارستان های آموزشی شهرکرد به آنتی بیوتیک های مختلف مقاومت بالایی داشتند. با توجه به اهمیت این باکتری در عفونت های بیمارستانی اعمال اقداماتی در جهت جلوگیری از پراکندگی این باکتری ضروری می باشد

    Determination and prevalence of antibiotic resistance in multi-drug resistant Klebsiella pneumonia in patients referred to the educational hospitals of Shahrekord in 2013

    Get PDF
    زمینه و هدف: شیوع مقاومت آنتی بیوتیکی بین باکتری های پاتوژن به مسئله جدی جهانی تبدیل شده است. کلبسیلا پنومونیه از مهم ترین پاتوژن های فرصت طلب است که باعث عفونت های اکتسابی از بیمارستان و جامعه می شود. گسترش جهانی سویه های دارای مقاومت چندگانه (MDR) یک نگرانی جدی است. هدف از این مطالعه بررسی الگوی مقاومت آنتی بیوتیکی و شیوع مقاومت چندگانه کلبسیلا پنومونیه از بیمارستان های آموزشی شهرکرد است. روش بررسی: در این مطالعه مقطعی- تحلیلی، 136 ایزوله کلبسیلا پنومونیه از نمونه های ادرار، خون، زخم، خلط جدا شد و با استفاده از آزمون های استاندارد بیوشیمیایی تعیین هویت شد. مقاومت ایزوله ها نسبت به آنتی بیوتیک های: آمیکاسین، سفالوتین، کوتریماکسازول، جنتامایسین، سفوتاکسیم، نیتروفورانتوئین، نالیدیکسیک اسید، سیپروفلوکساسین، تتراسایکلین، کلرآمفی نیکل، ایمی پنم و نورفلوکساسین به روش دیسک دیفیوژن طبق دستورالعمل CLSI مورد بررسی قرار گرفت. یافته ها: بر اساس نتایج حاصل، میزان مقاومت ایزوله ها به کوتریماکسازول 1/58، سفالوتین 9/52، تتراسایکلین 8/47، سفوتاکسیم 7/39، جنتامایسین 8/36، نیتروفورانتوئین و کلرآمفی نیکل 7/25، آمیکاسین 3/21، نورفلوکساسین 8/11، نالیدیکسیک اسید 9/19 و سیپروفلوکساسین و ایمی پنم 6/9 بود. از کل ایزوله ها، 81 نمونه (6/59) دارای مقاومت دارویی چندگانه بودند. نتیجه گیری: کلبسیلا پنومونیه دارای مقاومت چندگانه یک خطر جدی برای بیماران مراجعه کننده به بیمارستان های شهرکرد است؛ بنابراین نظارت بر مصرف آنتی بیوتیک ها و تعیین سویه های مقاوم به چند دارو می تواند از توسعه مقاومت در باکتری ها جلوگیری کند

    Analyzing Credit Card Fraud Cases with Supervised Machine Learning Methods: Logistic Regression and Naive Bayes

    Get PDF
    Frauds involving credit cards are simple and simple to target. With the rise of online payment credit cards have had a huge role in our daily life and economy for the past two decades and it is an important task for companies to identify fraud and non-fraud transactions. As the number of credit cards grows every day and the volume of transactions increases quickly in tandem, fraudsters who wish to exploit this market for illegitimate gains have come to light. Nowadays, it's quite simple to access anyone's credit card information, which makes it simpler for card fraudsters to do their crimes. Thanks to advances in technology, it is now possible to determine whether information gained with malicious intent has been used by looking at the costs and time involved in altering account transactions. The Credit Card Fraud analysis data set, which was obtained from the Kaggle database, was used in the modeling process together with The Logistic regression method and Naive Bayes algorithms. Using the Knime platform, we are going to apply machine learning techniques to practical data in this study. The goal of this study is to identify who performed the transaction by examining the periods when people used their credit cards. The Logistic regression approach and the Naive Bayes method both had success rates of 99.83%, which was the highest. The two methods' results are based on Cohen's kappa, accuracy, precision, recall, and other metrics. These and many more outcomes are shown in the confusion matrix

    Recognition of Handwritten Azerbaijani Letters using Convolutional Neural Networks

    Get PDF
    Technology advancements have made it possible to fill out documents such as petitions and forms electronically. However, in some circumstances, hard copies of documents that are difficult to share, store, and save due to their rigid dimensions are still used to preserve documents in the conventional manner. It is crucial to convert these written documents into digital media because of this. From this view point, this goal of this study is to investigate various methods for the digitalization of handwritten documents. In this study, image processing methods were used to pre-process the documents that were converted to image format. These operations include splitting the image format of the document into the lines, separating them into words and characters, and then classifying the characters. Convolutional Neural Networks, which is used for image recognition, is one of the deep learning techniques used in classification. The Extended MNIST dataset and the symbol dataset created from the pre-existing documents are used to train the model. The success rate of the generated dataset was 88.72 percent

    Bone age estimation by deep learning in X-Ray medical images

    Get PDF
    Patient skeletal age estimation using a skeletal bone age assessment method is a time consuming and very boring process. Today, in order to overcome these deficiencies, computerized techniques are used to replace hand-held techniques in the medical industry, to the extent that this results in better evaluation. The purpose of this research is to minimize the problems of the division of existing systems with deep learning algorithms and the high accuracy of diagnosis. The evaluation of skeletal bone age is the most clinical application for the study of endocrinology, genetic disorders and growth in young people. This assessment is usually performed using the radiologic analysis of the left wrist using the GP (Greulich-Pyle) technique or the TW (Tanner-Whitehouse) technique. Both techniques have many disadvantages, including a lack of human deductions from observations as well as being time-consuming

    Face Recognition in Smart Cameras by Yolo8

    Get PDF
    Smart AI Cameras have become a vital tool for enhancing security in several industries, such as industrial, transportation, and retail. This study investigates the methods that might be used to recognize moving objects in both daytime and nighttime settings. In this paper, convolutional neural networks, and recurrent neural networks—two deep learning techniques for object recognition—are investigated. We look at datasets containing a range of objects, lighting conFigureurations, and camera angles to determine how well these algorithms perform. In our research, we compared results from two separate datasets using YOLOv8. After all, we compared our methods and results with other scientists' research. We discussed the importance of camera placement, lighting issues, and algorithm choice for effective object detection. We evaluate the cameras' ability to recognize and follow moving things, as well as how well they can communicate with other security systems like alarms and access control. Our research demonstrates that smart AI cameras may significantly improve security in a variety of situations and that choosing the right algorithm and placing the camera is crucial for maximizing their effectiveness. For enterprises considering the usage of smart AI cameras for security, our research offers helpful information
    corecore